Question Number 50431 by Abdo msup. last updated on 16/Dec/18 $${solve}\:{xy}^{'} \:+{y}\:=\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }} \\ $$ Commented by Abdo msup. last updated on 16/Dec/18 $$\left({he}\right)\:\:\:\:\:{xy}^{'} \:+{y}\:=\mathrm{0}\:\Rightarrow{xy}^{'}…
Question Number 50432 by Abdo msup. last updated on 16/Dec/18 $${solve}\:{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'} \:+\mathrm{2}{y}\:={x}^{\mathrm{2}} \\ $$ Commented by Abdo msup. last updated on 16/Dec/18 $$\left({he}\right)\:\Rightarrow{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right){y}^{'}…
Question Number 50428 by Abdo msup. last updated on 16/Dec/18 $${solve}\:{y}^{'} \:+\frac{\mathrm{2}{x}+\mathrm{1}}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:{y}\:=\:\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 50429 by Abdo msup. last updated on 16/Dec/18 $${solve}\:{y}^{''} \:+{e}^{{x}^{\mathrm{2}} } {y}\:=\mathrm{0} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 19/Dec/18 $${prof}\:{Abdo}\:{it}\:{is}\:{really}\:{a}\:{excellent}\:{problem}…{still} \\…
Question Number 115750 by shahria14 last updated on 28/Sep/20 Answered by Dwaipayan Shikari last updated on 28/Sep/20 $$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{log}\left(\mathrm{1}+\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \right)}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{log}\left(\mathrm{1}+\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \right)=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{approx}\right)…
Question Number 115733 by bemath last updated on 28/Sep/20 $${Given}\:{xy}\:=\frac{\mathrm{1}}{\mathrm{3}}\:{for}\:{x},{y}\in\mathbb{R}\: \\ $$$${find}\:{min}\:{value}\:{of}\:\frac{\mathrm{4}}{{x}^{\mathrm{6}} }+\frac{\mathrm{9}}{{y}^{\mathrm{6}} } \\ $$ Answered by MJS_new last updated on 28/Sep/20 $${y}=\frac{\mathrm{1}}{\mathrm{3}{x}}\:\Rightarrow\:\frac{\mathrm{4}}{{x}^{\mathrm{6}} }+\frac{\mathrm{9}}{{y}^{\mathrm{6}}…
Question Number 115705 by mnjuly1970 last updated on 27/Sep/20 $$\:\:\:\:\:…\:{nice}\:\:\:{math}\:… \\ $$$$ \\ $$$$\:\:\:\:{find}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\Phi=\int_{\mathrm{0}} ^{\:\infty} \left({sin}\left({x}\right)−{cos}\left({x}\right)\:\right){ln}\left({x}\right){dx}=??? \\ $$$$ \\…
Question Number 115516 by bobhans last updated on 26/Sep/20 $${Find}\:{the}\:{supremum}\:{and}\:{the}\:{infimum} \\ $$$${of}\:\frac{{x}}{\mathrm{sin}\:{x}}\:{on}\:{the}\:{interval}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right] \\ $$ Commented by john santu last updated on 26/Sep/20 $${infimum}\:{y}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mathrm{sin}\:{x}}\:=\:\mathrm{1} \\…
Question Number 49935 by ajfour last updated on 12/Dec/18 Commented by ajfour last updated on 12/Dec/18 $${Find}\:{maximum}\:{coloured}\:{area}\:{if} \\ $$$${l}=\:\mathrm{1}. \\ $$ Answered by tanmay.chaudhury50@gmail.com last…
Question Number 49877 by ajfour last updated on 11/Dec/18 Commented by ajfour last updated on 11/Dec/18 $${Find}\:{maximum}\:{area}\:{in}\:{blue}. \\ $$ Answered by mr W last updated…