Menu Close

Category: Differentiation

advanced-mathematics-evaluate-0-cos-ln-x-x-1-2-dx-m-n-july-1970-

Question Number 115273 by mnjuly1970 last updated on 24/Sep/20 $$\:\:\:\:\:\:\:\:…\:{advanced}\:\:{mathematics}… \\ $$$$ \\ $$$$\:\:\:\:\:{evaluate}::: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Delta=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left({ln}\left({x}\right)\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:…{m}.{n}.{july}.\mathrm{1970}……

Let-f-be-a-real-valued-function-defined-on-the-interval-1-1-such-that-e-x-f-x-2-0-x-t-4-1-dt-x-1-1-and-let-g-be-the-inverse-function-of-f-Find-the-value-of-g-2-

Question Number 115260 by bobhans last updated on 24/Sep/20 $${Let}\:{f}\:{be}\:{a}\:{real}\:{valued}\:{function}\:{defined} \\ $$$${on}\:{the}\:{interval}\:\left(−\mathrm{1},\mathrm{1}\right)\:{such}\:{that}\: \\ $$$${e}^{−{x}} .{f}\left({x}\right)=\mathrm{2}+\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\sqrt{{t}^{\mathrm{4}} +\mathrm{1}}\:{dt}\:\forall{x}\in\left(−\mathrm{1},\mathrm{1}\right) \\ $$$${and}\:{let}\:{g}\:{be}\:{the}\:{inverse}\:{function}\:{of}\:{f} \\ $$$$.\:{Find}\:{the}\:{value}\:{of}\:{g}'\left(\mathrm{2}\right). \\ $$ Commented…

nice-math-nice-integral-prove-9-0-x-5-e-x-3-ln-1-x-dx-1-3-2-3-3-3-m-n-july-1970-

Question Number 115222 by mnjuly1970 last updated on 24/Sep/20 $$\:\:\:\:\:\:….\:{nice}\:\:{math}\:… \\ $$$$ \\ $$$$\:\:\:\:{nice}\:\:{integral}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\::: \\ $$$$\Psi=\mathrm{9}\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } {ln}\left(\mathrm{1}+{x}\right){dx}\:\overset{???} {=}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{3}}\right)\:\: \\…

nice-mathematics-prove-that-i-n-1-1-sinh-2-pin-1-6-1-2pi-ii-n-1-n-e-2pin-1-1-24-

Question Number 114996 by mnjuly1970 last updated on 22/Sep/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:{mathematics}…\: \\ $$$$\:\:\:\:{prove}\:{that}::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{sinh}^{\mathrm{2}} \left(\pi{n}\right)}\:=\frac{\mathrm{1}}{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}\pi}\:\:\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{8}\pi}\:\:\checkmark\checkmark \\…

Question-114945

Question Number 114945 by bemath last updated on 22/Sep/20 Answered by bobhans last updated on 22/Sep/20 $${f}\left({x},{y}\right)\:=\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{12}{y}+\mathrm{20} \\ $$$${f}_{{x}} =\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}=\mathrm{0}\:\rightarrow\begin{cases}{{x}=\mathrm{1}}\\{{x}=−\mathrm{1}}\end{cases} \\ $$$${f}_{{y}}…