Question Number 204878 by mnjuly1970 last updated on 29/Feb/24 $$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\sqrt[{\mathrm{4}}]{{e}}\:<\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{\:{t}^{\mathrm{2}} } {dt}<\:\frac{\mathrm{1}\:+\:{e}}{\mathrm{2}} \\ $$ Answered by witcher3…
Question Number 204826 by necx122 last updated on 28/Feb/24 $${A}\:{rectangular}\:{enclosure}\:{is}\:{to}\:{be}\:{made} \\ $$$${against}\:{a}\:{straight}\:{wall}\:{using}\:{three} \\ $$$${lengths}\:{of}\:{fencing}.\:{The}\:{total}\:{length}\:{of} \\ $$$${the}\:{fencing}\:{available}\:{is}\:\mathrm{50}{m}.\:{Show} \\ $$$${that}\:{the}\:{area}\:{of}\:{the}\:{enclosure}\:{is} \\ $$$$\mathrm{50}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} ,\:{where}\:{x}\:{is}\:{the}\:{length}\:{of}\:{the} \\ $$$${sides}\:{perpendicular}\:{to}\:{the}\:{wall}.\:{Hence} \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the}…
Question Number 204372 by mnjuly1970 last updated on 14/Feb/24 $$ \\ $$$$\:\:{If}\:,\:\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:{b}\right]\:\overset{{continuous}} {\rightarrow}\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:\:,\:\:\:\:{g}\::\:\mathbb{R}\:\underset{{b}−{periodic}} {\overset{{continuous}} {\rightarrow}}\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){g}\left({nx}\right){dx}\overset{?} {=}\frac{\mathrm{1}}{{b}}\:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){dx}\:.\int_{\mathrm{0}}…
Question Number 203835 by patrice last updated on 29/Jan/24 Answered by MathematicalUser2357 last updated on 30/Jan/24 $${bruh} \\ $$ Commented by Frix last updated on…
Question Number 203063 by LowLevelLump last updated on 09/Jan/24 Answered by MM42 last updated on 09/Jan/24 $${f}'={e}^{{x}} −{a}=\mathrm{0}\Rightarrow\alpha={lna} \\ $$$$\Rightarrow{minf}={a}−{alna} \\ $$$$\:{g}'={a}−\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow\beta=\frac{\mathrm{1}}{{a}} \\ $$$$\Rightarrow{ming}=\mathrm{1}+{lna} \\…
Question Number 202866 by mnjuly1970 last updated on 04/Jan/24 $$ \\ $$$$\:\:\:\:\:\:\:{calculate}\:… \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}\:\right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Answered by Mathspace…
Question Number 201940 by Calculusboy last updated on 15/Dec/23 $$\boldsymbol{{tan}}^{\mathrm{3}} \left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)=\boldsymbol{{x}}\:\:\boldsymbol{{find}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}} \\ $$ Answered by cortano12 last updated on 16/Dec/23 $$\:\:\Rightarrow\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\:\mathrm{tan}\:^{\mathrm{3}} \left(\mathrm{xy}^{\mathrm{2}} +\mathrm{y}\right)\:\right]\:=\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}\right) \\…
Question Number 201534 by Mathspace last updated on 08/Dec/23 $${let}\:{f}\left({x}\right)={tanx} \\ $$$${find}\:{f}^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$ Commented by Frix last updated on 09/Dec/23 $$\mathrm{There}'\mathrm{s}\:\mathrm{a}\:\mathrm{very}\:\mathrm{complicated}\:\mathrm{formula},\:\mathrm{you}\:\mathrm{must}…
Question Number 201275 by ndr last updated on 03/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201214 by mr W last updated on 02/Dec/23 $$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}−\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$ \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\:{Q}\mathrm{200929}\right) \\ $$ Answered by…