Menu Close

Category: Differentiation

tan-3-xy-2-y-x-find-dy-dx-

Question Number 201940 by Calculusboy last updated on 15/Dec/23 $$\boldsymbol{{tan}}^{\mathrm{3}} \left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)=\boldsymbol{{x}}\:\:\boldsymbol{{find}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}} \\ $$ Answered by cortano12 last updated on 16/Dec/23 $$\:\:\Rightarrow\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\:\mathrm{tan}\:^{\mathrm{3}} \left(\mathrm{xy}^{\mathrm{2}} +\mathrm{y}\right)\:\right]\:=\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}\right) \\…

A-ball-lies-on-the-function-z-xy-at-the-point-1-2-2-Find-the-point-in-the-xy-plane-where-the-ball-will-touch-it-an-unsolved-old-question-Q200929-

Question Number 201214 by mr W last updated on 02/Dec/23 $$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}−\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$ \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\:{Q}\mathrm{200929}\right) \\ $$ Answered by…

If-R-x-2-yi-2y-2-zj-xy-2-z-2-k-find-d-2-R-dx-2-d-2-R-dy-2-at-the-point-2-1-2-

Question Number 201140 by Calculusboy last updated on 30/Nov/23 $$\boldsymbol{{If}}\:\underset{−} {\boldsymbol{{R}}}=\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}\underset{−} {\boldsymbol{{i}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}\underset{−} {\boldsymbol{{j}}}+\boldsymbol{{xy}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \underset{−} {\boldsymbol{{k}}},\:\boldsymbol{{find}}\:\mid\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dx}}^{\mathrm{2}} }×\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dy}}^{\mathrm{2}} }\mid\:\: \\ $$$$\boldsymbol{{at}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right) \\…

Solve-A-smooth-sphere-A-of-mass-2kg-and-moving-with-speed-6ms-1-collides-obliquely-with-a-smooth-sphere-B-of-mass-4kg-just-before-the-impact-B-is-stationary-and-the-velocity-of-A-makes-an-angle-

Question Number 200738 by Calculusboy last updated on 22/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{A}}\:\boldsymbol{{smooth}}\:\boldsymbol{{sphere}}\:\boldsymbol{{A}},\boldsymbol{{of}}\:\boldsymbol{{mass}}\:\mathrm{2}\boldsymbol{{kg}}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{moving}}\:\boldsymbol{{with}}\:\boldsymbol{{speed}}\:\mathrm{6}\boldsymbol{{ms}}^{−\mathrm{1}} \boldsymbol{{collides}}\:\boldsymbol{{obliquely}}\: \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{a}}\:\boldsymbol{{smooth}}\:\boldsymbol{{sphere}}\:\boldsymbol{{B}}\:\boldsymbol{{of}}\:\boldsymbol{{mass}}\:\mathrm{4}\boldsymbol{{kg}}.\:\boldsymbol{{just}}\:\boldsymbol{{before}}\:\boldsymbol{{the}}\:\boldsymbol{{impact}}\:\boldsymbol{{B}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{stationary}}\:\boldsymbol{{and}}\:\boldsymbol{{the}}\:\boldsymbol{{velocity}}\:\boldsymbol{{of}}\:\boldsymbol{{A}}\:\boldsymbol{{makes}} \\ $$$$\boldsymbol{{an}}\:\boldsymbol{{angle}}\:\boldsymbol{{of}}\:\mathrm{10}°\:\boldsymbol{{with}}\:\boldsymbol{{the}}\:\boldsymbol{{lines}}\:\boldsymbol{{of}}\:\boldsymbol{{centers}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{two}}\:\boldsymbol{{sphere}}. \\ $$$$\boldsymbol{{The}}\:\boldsymbol{{coefficient}}\:\boldsymbol{{of}}\:\boldsymbol{{restitution}}\:\boldsymbol{{between}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{spheres}}\:\boldsymbol{{is}}\:\frac{\mathrm{1}}{\mathrm{2}}.\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{magnitude}}\:\boldsymbol{{and}}\: \\ $$$$\boldsymbol{{directions}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{velovities}}\:\boldsymbol{{of}}\:\boldsymbol{{A}}\:\boldsymbol{{and}}\:\boldsymbol{{B}}…

calculus-I-If-I-0-pi-x-1-sin-2-x-dx-a-2-a-where-s-n-1-1-n-s-

Question Number 200418 by mnjuly1970 last updated on 18/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calculus}\:\:\left(\:\:\mathrm{I}\:\:\right)\:\: \\ $$$$\:\:\mathrm{I}{f}\:,\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\:{x}\:}{\mathrm{1}\:\:+\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x}\:=\:{a}\:\zeta\:\left(\:\mathrm{2}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{a}\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{where}\:\:,\:\:\:\zeta\:\left({s}\:\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{1}}{{n}^{\:{s}} } \\…

Question-200251

Question Number 200251 by Calculusboy last updated on 16/Nov/23 Answered by Mathspace last updated on 16/Nov/23 $${f}\left({x},{y}\right)={sin}\left({e}^{{xy}} +{e}^{{x}} \right)\:\Rightarrow \\ $$$$\frac{\partial}{\partial{x}}{f}\left({x},{y}\right)=\frac{\partial}{\partial{x}}\left({e}^{{xy}} +{e}^{{x}} \right){cos}\left({e}^{{xy}} +{e}^{{x}} \right)…