Menu Close

Category: Differentiation

solution-of-0-1-xH-x-dx-x-1-0-1-x-x-1-dx-x-1-1-x-x-0-1-x-1-x-x-dx-2-1-0-1-x-d-dx-ln-x-2-1-xln-x-0-1-0-1-l

Question Number 112114 by mnjuly1970 last updated on 06/Sep/20 $$\:\:{solution}\:{of} \\ $$$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} {xH}_{{x}} {dx}\:\overset{\gamma+\psi\left({x}+\mathrm{1}\right)} {=}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}\left(\gamma+\psi\left({x}+\mathrm{1}\right)\right){dx}\: \\ $$$$\:\overset{\psi\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{x}}+\psi\left({x}\right)} {=}\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}\left(\gamma+\frac{\mathrm{1}}{{x}}+\psi\left({x}\right)\right){dx} \\ $$$$=\frac{\gamma}{\mathrm{2}}+\mathrm{1}+\:\int_{\mathrm{0}}…

advanced-calculus-evaluate-i-0-1-xH-x-dx-ii-n-1-H-n-n-2-2-n-iii-0-1-ln-x-1-1-3-x-1-x-2-m-n-ju

Question Number 111965 by mnjuly1970 last updated on 05/Sep/20 $$\:\:\:\:\:\:….{advanced}\:\:{calculus}… \\ $$$${evaluate}: \\ $$$$ \\ $$$$\:\:\:\:{i}::\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {xH}_{{x}} {dx}\:=???\:\: \\ $$$$\:\:\:\:\:{ii}::\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{\mathrm{2}} \mathrm{2}^{{n}\:}…

Question-177456

Question Number 177456 by cortano1 last updated on 05/Oct/22 Answered by a.lgnaoui last updated on 05/Oct/22 $${posons}\:\:{x}=\mathrm{sin}\:{t}\:\:\:\:{alors}\:{y}=\mathrm{cos}\:{t} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:{t}}+\frac{\mathrm{4}}{\mathrm{cos}\:{t}}=\frac{\mathrm{cos}\:{t}+\mathrm{4sin}\:{t}}{\mathrm{sin}\:{t}\mathrm{cos}\:{t}} \\ $$$$\left.{le}\:{rapoort}\:\:{est}\:{minimale}\:\:{si}\:\:\:\mathrm{scos}\:{t}+\mathrm{4sin}\:{t}\:{mnimale}\right) \\ $$$$\begin{cases}{\mathrm{cos}\:{t}+\mathrm{4sin}\:{t}=\mathrm{0}}\\{\mathrm{sin}\:{t}\mathrm{cos}\:{t}\neq\mathrm{0}}\end{cases} \\ $$$$\mathrm{4sin}\:{t}=−\mathrm{cos}\:{t}\:\:\:\mathrm{tan}\:{t}=−\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{sin}\:{t}}{\mathrm{cos}\:{t}}…

Question-177320

Question Number 177320 by mnjuly1970 last updated on 03/Oct/22 Answered by a.lgnaoui last updated on 04/Oct/22 $$\sqrt{\mathrm{2}}\:+\left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right){x}+{x}^{\mathrm{2}} =\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}=−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\left[\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}\:−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}+\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}+\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}\right] \\ $$$$\int_{\mathrm{0}} ^{\infty}…

Question-111584

Question Number 111584 by ajfour last updated on 04/Sep/20 Answered by ajfour last updated on 04/Sep/20 $${C}\left(\mathrm{0},{y}\right)\:\:\:;\:{A}\left({x},\mathrm{0}\right)\:\:;\:\:{B}\left({z},{z}^{\mathrm{2}} \right) \\ $$$$\sqrt{\left({x}−{z}\right)^{\mathrm{2}} +{z}^{\mathrm{4}} }+\sqrt{{z}^{\mathrm{2}} +\left({y}−{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:{a}…

Question-45994

Question Number 45994 by peter frank last updated on 19/Oct/18 Answered by MrW3 last updated on 20/Oct/18 $${we}\:{know}\:\frac{{x}+{y}}{\mathrm{2}}\geqslant\sqrt{{xy}}\:{when}\:{x},{y}\geqslant\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{2}\left({a}+{b}\right)={L}\Rightarrow{a}+{b}=\frac{{L}}{\mathrm{2}} \\ $$$${A}_{{rectangular}} ={ab}\leqslant\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}}…