Menu Close

Category: Differentiation

Question-108727

Question Number 108727 by Don08q last updated on 18/Aug/20 Answered by Dwaipayan Shikari last updated on 18/Aug/20 $${x}\left({t}\right)={t}^{\mathrm{3}} −\mathrm{15}{t}^{\mathrm{2}} +\mathrm{72}{t}+\mathrm{3} \\ $$$${v}_{{avg}} =\frac{{x}\left(\mathrm{8}\right)−{x}\left(\mathrm{0}\right)}{\mathrm{8}}=\frac{\mathrm{512}−\mathrm{15}.\mathrm{64}+\mathrm{72}.\mathrm{8}+\mathrm{3}−\mathrm{3}}{\mathrm{8}}=\mathrm{16}\frac{{m}}{{s}} \\ $$$$…

Dear-Jr-inter-students-use-this-firmulas-Derivates-d-dx-constant-k-0-d-dx-x-n-n-x-n-1-d-dx-x-2-2x-d-dx-

Question Number 42995 by srihari marta last updated on 06/Sep/18 $${Dear}\:\:{Jr}\:{inter}\:{students}\:{use}\:{this}\:{firmulas} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Derivates}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:{d}/{dx}\:{constant}\left({k}\right)=\mathrm{0} \\ $$$$\:\:{d}/{dx}\:\:{x}^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}.{x}^{{n}−\mathrm{1}} \\ $$$$\:\:{d}/{dx}\:\:{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{x} \\ $$$$\:\:{d}/{dx}\:\:\sqrt{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}/\mathrm{2}\sqrt{{x}} \\ $$$$\:\:{d}/{dx}\:\:{e}^{{x}}…

0-1-ln-2-1-x-1-x-2-Li-2-1-2-Solution-i-b-p-1-1-x-ln-2-1-x-0-1-2-0-1-ln-1-x-1-x-1-x-dx-lim-x-1-

Question Number 173909 by mnjuly1970 last updated on 20/Jul/22 $$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}+{x}\:\right)^{\:\mathrm{2}} }\:=\:{Li}_{\mathrm{2}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:−−−\:\:\:{Solution}\:−−− \\ $$$$\:\:\:\:\Omega\:\overset{{i}.{b}.{p}} {=}\left\{\left[−\frac{\mathrm{1}}{\mathrm{1}+{x}}{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}}…

let-f-x-x-2x-1-cos-t-t-4-t-2-4-dt-1-find-D-f-2-calculate-f-x-3-find-lim-x-f-x-

Question Number 42808 by maxmathsup by imad last updated on 02/Sep/18 $${let}\:{f}\left({x}\right)\:=\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{\mathrm{1}+{cos}\left({t}\right)}{\:\sqrt{{t}^{\mathrm{4}} −{t}^{\mathrm{2}} \:+\mathrm{4}}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{D}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right) \\…

Question-173836

Question Number 173836 by mathlove last updated on 19/Jul/22 Commented by aleks041103 last updated on 21/Jul/22 $${I}=\int_{−\mathrm{2}} ^{−\mathrm{1}} \left(\mathrm{10}\sqrt[{\mathrm{4}}]{{x}^{\mathrm{6}} }−\mathrm{2}{x}\right){dx}= \\ $$$$=\mathrm{10}\int_{−\mathrm{2}} ^{−\mathrm{1}} \sqrt[{\mathrm{4}}]{{x}^{\mathrm{6}} }{dx}\:−\:\int_{−\mathrm{2}}…

BeMath-1-x-5-x-x-8-1-dx-2-1-2-1-sin-1-x-x-3-dx-

Question Number 108208 by bemath last updated on 15/Aug/20 $$\:\:\:\:\:\:\:\frac{\mathcal{B}{e}\mathcal{M}{ath}}{\boxminus} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{8}} +\mathrm{1}}\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$ Answered by john…