Question Number 172973 by mnjuly1970 last updated on 04/Jul/22 $$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{1}}{\left(\mathrm{1}+\:{x}^{\:\mathrm{4}} \right)\:\left(\mathrm{1}+\:{x}^{\:\mathrm{6}} \right)}{dx}=\frac{{p}\sqrt{\mathrm{2}}\:−{q}}{\mathrm{12}}\:\pi \\ $$$$\:\:\:{p}\:,\:\:{q}=? \\ $$$$ \\ $$ Answered by floor(10²Eta[1])…
Question Number 107434 by Adilali last updated on 10/Aug/20 Commented by JDamian last updated on 10/Aug/20 $${read}\:{solution}\:{of}\:{question}\:#\mathrm{107080} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 41757 by Tawa1 last updated on 12/Aug/18 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{sine}\:\mathrm{transform}\:\mathrm{of}\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}\left(\mathrm{x}^{\mathrm{r}} \:+\:\mathrm{a}^{\mathrm{r}} \right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172785 by mnjuly1970 last updated on 01/Jul/22 Answered by Eulerian last updated on 01/Jul/22 $$\: \\ $$$$\:\mathrm{Note}:\:\:\mathrm{H}_{\mathrm{n}−\mathrm{1}} \:=\:\gamma\:+\:\psi^{\left(\mathrm{0}\right)} \left(\mathrm{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{H}_{\mathrm{n}−\mathrm{1}} \:=\:\mathrm{H}_{\mathrm{n}} \:−\:\frac{\mathrm{1}}{\mathrm{n}}…
Question Number 41682 by ajfour last updated on 11/Aug/18 $${find}\:{radius}\:{of}\:{curvature}\:{to} \\ $$$${y}=\mathrm{sin}\:{x}\:\:{at}\:\:{x}=\pi/\mathrm{6}\:. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18 $$ \\ $$$${ds}={rd}\theta \\…
Question Number 172681 by mnjuly1970 last updated on 30/Jun/22 Answered by Jamshidbek last updated on 30/Jun/22 $$\mathrm{Hint}:\:\mathrm{Lemma}:\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{after}\:\mathrm{tg}\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{t}. \\ $$…
Question Number 172613 by cortano1 last updated on 29/Jun/22 $$\:\:\:{min}\:{y}=\mathrm{9}\:\mathrm{sin}\:^{\mathrm{2}} {x}+\:\mathrm{4}\:{csc}^{\mathrm{2}} {x}\:+\:\mathrm{3} \\ $$ Answered by Rasheed.Sindhi last updated on 29/Jun/22 $${y}=\left(\mathrm{3sin}\:{x}+\mathrm{2}\:\mathrm{csc}\:{x}\right)^{\mathrm{2}} −\mathrm{12}+\mathrm{3} \\ $$$${y}=\left(\mathrm{3sin}\:{x}+\mathrm{2}\:\mathrm{csc}\:{x}\right)^{\mathrm{2}}…
Question Number 172526 by mnjuly1970 last updated on 28/Jun/22 $$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{dx}}{\left(\mathrm{4}−\mathrm{2}{x}+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{3}} }\:\overset{?} {=}\:\frac{\mathrm{1}}{\mathrm{64}}\:+\frac{\pi}{\mathrm{36}\sqrt{\mathrm{3}}} \\ $$ Answered by MJS_new last updated on…
Question Number 172359 by mnjuly1970 last updated on 25/Jun/22 Answered by Mathspace last updated on 26/Jun/22 $${J}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {ln}^{\mathrm{2}} {xdx} \\ $$$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 106787 by bemath last updated on 07/Aug/20 $$\:\:\:\:\:\:\overset{@\mathrm{bemath}@} {\:} \\ $$$$\:\:\mathrm{y}\:=\:\left(\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{sin}\:\mathrm{x}} \:,\:\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:? \\ $$ Answered by Dwaipayan Shikari last updated on 07/Aug/20 $${logy}={sinxlog}\left({cos}\mathrm{2}{x}\right)…