Menu Close

Category: Differentiation

Question-172681

Question Number 172681 by mnjuly1970 last updated on 30/Jun/22 Answered by Jamshidbek last updated on 30/Jun/22 $$\mathrm{Hint}:\:\mathrm{Lemma}:\:\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{after}\:\mathrm{tg}\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{t}. \\ $$…

min-y-9-sin-2-x-4-csc-2-x-3-

Question Number 172613 by cortano1 last updated on 29/Jun/22 $$\:\:\:{min}\:{y}=\mathrm{9}\:\mathrm{sin}\:^{\mathrm{2}} {x}+\:\mathrm{4}\:{csc}^{\mathrm{2}} {x}\:+\:\mathrm{3} \\ $$ Answered by Rasheed.Sindhi last updated on 29/Jun/22 $${y}=\left(\mathrm{3sin}\:{x}+\mathrm{2}\:\mathrm{csc}\:{x}\right)^{\mathrm{2}} −\mathrm{12}+\mathrm{3} \\ $$$${y}=\left(\mathrm{3sin}\:{x}+\mathrm{2}\:\mathrm{csc}\:{x}\right)^{\mathrm{2}}…

Question-172359

Question Number 172359 by mnjuly1970 last updated on 25/Jun/22 Answered by Mathspace last updated on 26/Jun/22 $${J}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {ln}^{\mathrm{2}} {xdx} \\ $$$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}}…

bobhans-How-do-you-find-a-point-on-the-curve-y-x-2-closest-to-the-point-0-18-

Question Number 106779 by bobhans last updated on 07/Aug/20 $$\:\:\:\:\:\:\:\:\:^{\succ\mathrm{bobhans}\prec} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{18}\right)\:? \\ $$ Answered by john santu last updated on 07/Aug/20 $$\:\:\:\:\:\:\:^{@\mathrm{JS}@}…

Max-and-min-P-2-x-3-y-subject-to-constraint-x-2-9-y-2-25-1-x-2-y-2-

Question Number 172253 by cortano1 last updated on 25/Jun/22 $$\:\:{Max}\:{and}\:{min}\:{P}=\sqrt{\mathrm{2}}\:{x}+\:\sqrt{\mathrm{3}}\:{y} \\ $$$${subject}\:{to}\:{constraint}\: \\ $$$$\:\frac{{x}^{\mathrm{2}} }{\mathrm{9}}\:+\frac{{y}^{\mathrm{2}} }{\mathrm{25}}\:\leqslant\:\mathrm{1}\:\leqslant\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$ Answered by mr W last updated…

Proof-that-d-n-dx-n-cos-x-cos-x-npi-2-d-n-dx-n-sin-x-sin-x-npi-2-where-n-Z-

Question Number 41151 by rahul 19 last updated on 02/Aug/18 $$\mathrm{Proof}\:\mathrm{that}\::\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{cos}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{sin}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\mathrm{where}\:\mathrm{n}\in\mathbb{Z}. \\ $$ Commented by prof Abdo…