Question Number 201214 by mr W last updated on 02/Dec/23 $$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}−\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$ \\ $$$$\left({an}\:{unsolved}\:{old}\:{question}\:{Q}\mathrm{200929}\right) \\ $$ Answered by…
Question Number 201140 by Calculusboy last updated on 30/Nov/23 $$\boldsymbol{{If}}\:\underset{−} {\boldsymbol{{R}}}=\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}\underset{−} {\boldsymbol{{i}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}\underset{−} {\boldsymbol{{j}}}+\boldsymbol{{xy}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \underset{−} {\boldsymbol{{k}}},\:\boldsymbol{{find}}\:\mid\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dx}}^{\mathrm{2}} }×\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dy}}^{\mathrm{2}} }\mid\:\: \\ $$$$\boldsymbol{{at}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right) \\…
Question Number 201133 by mnjuly1970 last updated on 30/Nov/23 $$ \\ $$$$ \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{1}} ^{\:\mathrm{3}} \frac{\:\mathrm{1}}{\:\sqrt{\left({x}−\mathrm{1}\:\right)^{\mathrm{3}} }\:+\:\sqrt{\left({x}+\mathrm{1}\:\right)^{\mathrm{3}} }}\:{dx}=\:?\:\:\: \\ $$$$ \\ $$ Commented by Frix…
Question Number 200738 by Calculusboy last updated on 22/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{A}}\:\boldsymbol{{smooth}}\:\boldsymbol{{sphere}}\:\boldsymbol{{A}},\boldsymbol{{of}}\:\boldsymbol{{mass}}\:\mathrm{2}\boldsymbol{{kg}}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{moving}}\:\boldsymbol{{with}}\:\boldsymbol{{speed}}\:\mathrm{6}\boldsymbol{{ms}}^{−\mathrm{1}} \boldsymbol{{collides}}\:\boldsymbol{{obliquely}}\: \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{a}}\:\boldsymbol{{smooth}}\:\boldsymbol{{sphere}}\:\boldsymbol{{B}}\:\boldsymbol{{of}}\:\boldsymbol{{mass}}\:\mathrm{4}\boldsymbol{{kg}}.\:\boldsymbol{{just}}\:\boldsymbol{{before}}\:\boldsymbol{{the}}\:\boldsymbol{{impact}}\:\boldsymbol{{B}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{stationary}}\:\boldsymbol{{and}}\:\boldsymbol{{the}}\:\boldsymbol{{velocity}}\:\boldsymbol{{of}}\:\boldsymbol{{A}}\:\boldsymbol{{makes}} \\ $$$$\boldsymbol{{an}}\:\boldsymbol{{angle}}\:\boldsymbol{{of}}\:\mathrm{10}°\:\boldsymbol{{with}}\:\boldsymbol{{the}}\:\boldsymbol{{lines}}\:\boldsymbol{{of}}\:\boldsymbol{{centers}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{two}}\:\boldsymbol{{sphere}}. \\ $$$$\boldsymbol{{The}}\:\boldsymbol{{coefficient}}\:\boldsymbol{{of}}\:\boldsymbol{{restitution}}\:\boldsymbol{{between}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{spheres}}\:\boldsymbol{{is}}\:\frac{\mathrm{1}}{\mathrm{2}}.\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{magnitude}}\:\boldsymbol{{and}}\: \\ $$$$\boldsymbol{{directions}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{velovities}}\:\boldsymbol{{of}}\:\boldsymbol{{A}}\:\boldsymbol{{and}}\:\boldsymbol{{B}}…
Question Number 200418 by mnjuly1970 last updated on 18/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calculus}\:\:\left(\:\:\mathrm{I}\:\:\right)\:\: \\ $$$$\:\:\mathrm{I}{f}\:,\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\:{x}\:}{\mathrm{1}\:\:+\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x}\:=\:{a}\:\zeta\:\left(\:\mathrm{2}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{a}\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{where}\:\:,\:\:\:\zeta\:\left({s}\:\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{1}}{{n}^{\:{s}} } \\…
Question Number 200251 by Calculusboy last updated on 16/Nov/23 Answered by Mathspace last updated on 16/Nov/23 $${f}\left({x},{y}\right)={sin}\left({e}^{{xy}} +{e}^{{x}} \right)\:\Rightarrow \\ $$$$\frac{\partial}{\partial{x}}{f}\left({x},{y}\right)=\frac{\partial}{\partial{x}}\left({e}^{{xy}} +{e}^{{x}} \right){cos}\left({e}^{{xy}} +{e}^{{x}} \right)…
Question Number 199459 by cortano12 last updated on 04/Nov/23 $$\:\:\mathrm{What}\:\mathrm{minimum}\:\mathrm{value}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \:\mathrm{when}\: \\ $$$$\:\:\mathrm{x}+\mathrm{2y}+\mathrm{4z}=\mathrm{21} \\ $$ Answered by Frix last updated on…
Question Number 199261 by ajfour last updated on 30/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199176 by cortano12 last updated on 29/Oct/23 $$\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:=\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4x}\right)\:\mathrm{sin}\:\mathrm{4x}\: \\ $$$$\:\:\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{6}\right)} \left(\mathrm{x}\right).\: \\ $$ Answered by MM42 last updated on 29/Oct/23 $${f}={u}.{v} \\…
Question Number 198953 by ArifinTanjung last updated on 26/Oct/23 $$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{3x}−\mathrm{5}}{\mathrm{2x}+\mathrm{1}}\:\rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=….? \\ $$ Answered by Rasheed.Sindhi last updated on 26/Oct/23 $$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{3x}−\mathrm{5}}{\mathrm{2x}+\mathrm{1}}\:\rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=….? \\ $$$$\left(\frac{{u}}{{v}}\right)^{'} =\frac{{v}\:{u}'−{u}\:{v}'}{{v}^{\mathrm{2}}…