Menu Close

Category: Differentiation

Find-the-coordinates-of-the-point-on-the-curve-y-x-1-x-at-which-the-tangents-to-the-curve-are-parallel-to-the-line-x-y-8-0-Find-the-equations-of-the-tangents-at-these-points-

Question Number 171267 by pete last updated on 11/Jun/22 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\frac{{x}}{\mathrm{1}+{x}}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:{x}−{y}+\mathrm{8}=\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at} \\ $$$$\mathrm{these}\:\mathrm{points}. \\ $$ Commented by greougoury555 last updated…

find-the-drivative-of-f-x-y-z-cos-xy-e-zy-ln-zy-at-point-1-0-1-2-in-the-direction-v-i-2j-2k-

Question Number 171265 by ali009 last updated on 11/Jun/22 $${find}\:{the}\:{drivative}\:{of}\: \\ $$$${f}\left({x},{y},{z}\right)={cos}\left({xy}\right)+{e}^{{zy}} +{ln}\left({zy}\right) \\ $$$${at}\:{point}\:\left(\mathrm{1},\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{in}\:{the}\:{direction} \\ $$$${v}={i}+\mathrm{2}{j}+\mathrm{2}{k} \\ $$ Terms of Service Privacy Policy Contact:…

let-g-x-x-1-x-2-1-prove-that-g-is-solution-for-the-differencial-equation-4-1-x-2-y-4xy-y-0-prove-that-g-is-C-on-R-2-determine-a-relation-between-g-n-0-and-g-n-

Question Number 40103 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{g}\left({x}\right)=\sqrt{−{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{g}\:{is}\:{solution}\:{for}\:{the}\:{differencial}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{4}{xy}^{'} \:−{y}\:=\mathrm{0}\:\:\:.{prove}\:{that}\:{g}\:{is}\:{C}^{\infty} {on}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{relation}\:{between}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:{and}\:{g}^{\left({n}+\mathrm{2}\right)} \left(\mathrm{0}\right)…

f-x-g-x-and-g-x-f-x-for-all-real-x-andf-5-2-f-5-then-f-2-10-g-2-10-is-a-2-b-4-c-8-d-none-

Question Number 40052 by LXZ last updated on 15/Jul/18 $${f}\:'\left({x}\right)={g}\left({x}\right)\:{and}\:\:{g}\:'\left({x}\right)=−{f}\left({x}\right)\:{for} \\ $$$${all}\:{real}\:\:{x}\:\:{andf}\left(\mathrm{5}\right)=\mathrm{2}={f}\:'\left(\mathrm{5}\right)\:{then} \\ $$$${f}^{\mathrm{2}} \left(\mathrm{10}\right)+{g}^{\mathrm{2}} \left(\mathrm{10}\right)\:{is} \\ $$$$\left({a}\right)\:\:\:\mathrm{2}\:\:\:\:\:\left({b}\right)\:\:\:\mathrm{4}\:\:\:\:\:\left({c}\right)\:\:\:\:\mathrm{8}\:\:\:\:\:\left({d}\right)\:{none} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated…

Question-39930

Question Number 39930 by Raj Singh last updated on 13/Jul/18 Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jul/18 $${one}\:{is}\:{x}\:{and}\:{another}\:{is}\:\mathrm{6}−{x} \\ $$$${y}={x}^{\mathrm{3}} +\left(\mathrm{6}−{x}\right)^{\mathrm{3}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{6}−{x}\right)^{\mathrm{2}} ×−\mathrm{1}…

Question-39921

Question Number 39921 by Raj Singh last updated on 13/Jul/18 Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jul/18 $$\left.{iii}\right){max}\:{value}\:{of}\:{sin}\mathrm{2}{x}=\mathrm{1} \\ $$$${min}\:{value}\:{of}\:{sin}\mathrm{2}{x}=−\mathrm{1} \\ $$$${s}\mathrm{0}\:{max}\:{value}\:{ofh}\left({x}\right)=\mathrm{1}+\mathrm{5}=\mathrm{6} \\ $$$${min}\:{value}\:−\mathrm{1}+\mathrm{5}=\mathrm{4} \\…

show-that-the-padel-equation-of-the-curve-x-acos-acos-2-y-2asin-asin-2-is-9-r-2-a-2-8p-2-

Question Number 170904 by infinityaction last updated on 03/Jun/22 $$\:\:\:\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{padel}}\:\boldsymbol{\mathrm{equation}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{{the}} \\ $$$$\:\:\:\boldsymbol{\mathrm{curve}}\:\:\:\boldsymbol{\mathrm{x}}\:=\: \boldsymbol{{a}\mathrm{cos}\theta}\:−\boldsymbol{\mathrm{acos}}\:\mathrm{2}\boldsymbol{\theta}\:\:, \\ $$$$\:\boldsymbol{\mathrm{y}}\:=\:\mathrm{2}\boldsymbol{\mathrm{a}}\mathrm{sin}\:\boldsymbol{\theta}\:−\boldsymbol{\mathrm{a}}\mathrm{sin}\:\mathrm{2}\boldsymbol{\theta}\:\:\mathrm{is}\:\mathrm{9}\left(\mathrm{r}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\:=\:\mathrm{8}{p}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact:…