Menu Close

Category: Differentiation

f-x-2x-3-x-gt-0-3x-5-x-0-df-x-dx-

Question Number 171379 by mathlove last updated on 14/Jun/22 $${f}\left({x}\right)=\begin{cases}{\mathrm{2}{x}+\mathrm{3}\:\:\:;{x}>\mathrm{0}}\\{\mathrm{3}{x}−\mathrm{5}\:\:;{x}\leqslant\mathrm{0}}\end{cases} \\ $$$$\frac{{df}\left({x}\right)}{{dx}}=? \\ $$ Commented by MJS_new last updated on 14/Jun/22 $${f}\left({x}\right)\:=\begin{cases}{\mathrm{3}{x}−\mathrm{5};\:{x}\leqslant\mathrm{0}}\\{\mathrm{not}\:\mathrm{defined};\:\mathrm{0}<{x}\leqslant\mathrm{2}}\\{\mathrm{2}{x}+\mathrm{3};\:{x}>\mathrm{2}}\end{cases} \\ $$$${f}\:'\left({x}\right)=\begin{cases}{\mathrm{3};\:{x}\leqslant\mathrm{0}}\\{\mathrm{not}\:\mathrm{defined};\:\mathrm{0}<{x}\leqslant\mathrm{2}}\\{\mathrm{2};\:{x}>\mathrm{2}}\end{cases} \\…

Question-40277

Question Number 40277 by Raj Singh last updated on 18/Jul/18 Answered by MJS last updated on 18/Jul/18 $$\frac{{d}}{{d}\theta}\left[\mathrm{sin}^{{p}} \:\theta\:\mathrm{cos}^{{q}} \:\theta\right]=\mathrm{sin}^{{p}−\mathrm{1}} \:\theta\:\mathrm{cos}^{{q}−\mathrm{1}} \:\theta\:\left({p}\mathrm{cos}^{\mathrm{2}} \:\theta\:−{q}\mathrm{sin}^{\mathrm{2}} \:\theta\right) \\…

Question-40276

Question Number 40276 by Raj Singh last updated on 18/Jul/18 Answered by MJS last updated on 18/Jul/18 $$\frac{{d}}{{dx}}\left[\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{tan}\:{x}}\right]=\frac{\mathrm{cos}^{\mathrm{3}} \:{x}\:−\mathrm{sin}^{\mathrm{3}} \:{x}}{\mathrm{1}+\mathrm{2sin}\:{x}\:\mathrm{cos}\:{x}} \\ $$$$\mathrm{zeros}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{4}{k}+\mathrm{1}\right)\:\wedge\:{k}\in\mathbb{Z} \\ $$$$\mathrm{max}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{4}{k}+\mathrm{1}\right)\:\wedge\:{k}=\mathrm{2}{n}\:\wedge\:{n}\in\mathbb{Z}\:\Rightarrow \\…

The-tangent-to-the-curve-y-ax-2-bx-2-at-1-1-2-is-parallel-to-the-normal-to-the-curve-y-x-2-6x-10-at-2-2-Find-the-values-of-a-and-b-

Question Number 171315 by pete last updated on 12/Jun/22 $$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{2} \\ $$$$\mathrm{at}\:\left(\mathrm{1},\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{10}\:\mathrm{at}\:\left(−\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{values} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$ Answered by som(math1967) last updated…

Find-the-coordinates-of-the-point-on-the-curve-y-x-1-x-at-which-the-tangents-to-the-curve-are-parallel-to-the-line-x-y-8-0-Find-the-equations-of-the-tangents-at-these-points-

Question Number 171267 by pete last updated on 11/Jun/22 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\frac{{x}}{\mathrm{1}+{x}}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:{x}−{y}+\mathrm{8}=\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at} \\ $$$$\mathrm{these}\:\mathrm{points}. \\ $$ Commented by greougoury555 last updated…

find-the-drivative-of-f-x-y-z-cos-xy-e-zy-ln-zy-at-point-1-0-1-2-in-the-direction-v-i-2j-2k-

Question Number 171265 by ali009 last updated on 11/Jun/22 $${find}\:{the}\:{drivative}\:{of}\: \\ $$$${f}\left({x},{y},{z}\right)={cos}\left({xy}\right)+{e}^{{zy}} +{ln}\left({zy}\right) \\ $$$${at}\:{point}\:\left(\mathrm{1},\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{in}\:{the}\:{direction} \\ $$$${v}={i}+\mathrm{2}{j}+\mathrm{2}{k} \\ $$ Terms of Service Privacy Policy Contact:…

let-g-x-x-1-x-2-1-prove-that-g-is-solution-for-the-differencial-equation-4-1-x-2-y-4xy-y-0-prove-that-g-is-C-on-R-2-determine-a-relation-between-g-n-0-and-g-n-

Question Number 40103 by maxmathsup by imad last updated on 15/Jul/18 $${let}\:{g}\left({x}\right)=\sqrt{−{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{g}\:{is}\:{solution}\:{for}\:{the}\:{differencial}\:{equation} \\ $$$$\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} \:+\mathrm{4}{xy}^{'} \:−{y}\:=\mathrm{0}\:\:\:.{prove}\:{that}\:{g}\:{is}\:{C}^{\infty} {on}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{a}\:{relation}\:{between}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:{and}\:{g}^{\left({n}+\mathrm{2}\right)} \left(\mathrm{0}\right)…