Menu Close

Category: Differentiation

Question-36590

Question Number 36590 by ajfour last updated on 03/Jun/18 Commented by ajfour last updated on 03/Jun/18 $${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC} \\ $$$${if}\:{one}\:{vertex}\:{is}\:{on}\:{smaller}\:{circle} \\ $$$${of}\:{radius}\:\boldsymbol{{r}}\:{and}\:{other}\:{two}\:{on}\: \\ $$$${larger}\:{circle}\:{of}\:{radius}\:\boldsymbol{{R}}\:. \\ $$$${The}\:{distance}\:{between}\:{centres}\:{of}…

good-evenig-for-all-this-is-an-answerd-question-i-will-repost-it-if-f-x-x-2-is-there-a-cirtical-point-when-x-2-

Question Number 102094 by  M±th+et+s last updated on 06/Jul/20 $${good}\:{evenig}\:{for}\:{all} \\ $$$$ \\ $$$${this}\:{is}\:{an}\:{answerd}\:{question}\:{i}\:{will}\:{repost}\:{it} \\ $$$${if}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=\sqrt{{x}−\mathrm{2}} \\ $$$${is}\:{there}\:{a}\:{cirtical}\:{point}\:{when}\:{x}=\mathrm{2}\:? \\ $$$$ \\ $$$$ \\…

Find-the-coordinates-of-the-point-on-the-curve-y-3x-2-2x-5-where-the-tangent-is-parallel-to-the-line-y-5-8x-

Question Number 167567 by pete last updated on 19/Mar/22 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{y}=\mathrm{3x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{5},\:\mathrm{where}\:\mathrm{the}\:\mathrm{tangent} \\ $$$$\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}−\mathrm{5}=\mathrm{8x}. \\ $$ Commented by greogoury55 last updated on 19/Mar/22 $$\:{y}'=\:\mathrm{8}…

y-x-3-x-5-2-x-2-x-2-Find-local-maxima-and-minima-hence-draw-the-graph-Also-find-radius-of-circle-touching-all-three-sections-of-the-curve-that-results-

Question Number 36341 by ajfour last updated on 02/Jun/18 $${y}=\frac{\left({x}−\mathrm{3}\right)\left({x}+\mathrm{5}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({x}+\mathrm{2}\right)} \\ $$$${Find}\:{local}\:{maxima}\:{and}\:{minima}; \\ $$$${hence}\:{draw}\:{the}\:{graph}.{Also}\:{find} \\ $$$${radius}\:{of}\:{circle}\:{touching}\:{all}\:{three} \\ $$$${sections}\:{of}\:{the}\:{curve}\:{that}\:{results}. \\ $$$$ \\ $$ Answered…