Question Number 35537 by Raj Singh last updated on 20/May/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/May/18 $${f}\left({x}\right)={y}={x}^{\mathrm{2}} \:\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}^{\mathrm{2}} =\mathrm{1}\:\:\:\:{and}\:{f}\left(\mathrm{2}\right)=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${slope}\:{m}=\frac{{f}\left(\mathrm{2}\right)−{f}\left(\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}}=\mathrm{3}…
Question Number 35461 by Raj Singh last updated on 19/May/18 Answered by tanmay.chaudhury50@gmail.com last updated on 19/May/18 $${x}.\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{1}+{y}\right)^{−\mathrm{1}/\mathrm{2}} ×\frac{{dy}}{{dx}}+{y}×\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{1}+{x}\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$ \\ $$ Terms of…
Question Number 166437 by mnjuly1970 last updated on 20/Feb/22 $$ \\ $$$$\:\:\:\:\:\:{calculate}\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{ln}\left(\mathrm{1}−{x}\:\right).{ln}\left(\mathrm{1}+\:{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$$$\:\:\:\:\:\:−−−−−−− \\ $$ Answered by qaz last…
Question Number 166435 by mnjuly1970 last updated on 20/Feb/22 $$ \\ $$$$\:\:\:\:\mathscr{E}{quation}\:: \\ $$$$\:\:\:\:\:{Solve}\:{in}\:\:\mathbb{R}\: \\ $$$$\:\:\:\lfloor{x}\rfloor\:+\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\mathrm{1} \\ $$$$\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered by mahdipoor last updated…
Question Number 166331 by mr W last updated on 18/Feb/22 $${prove}\:{that} \\ $$$$\frac{{df}^{−\mathrm{1}} \left({a}\right)}{{dx}}×\frac{{df}\left({f}^{−\mathrm{1}} \left({a}\right)\right)}{{dx}}=\mathrm{1} \\ $$ Commented by mr W last updated on 19/Feb/22…
Question Number 35248 by Raj Singh last updated on 17/May/18 Commented by Joel579 last updated on 17/May/18 $$\mathrm{Would}\:\mathrm{u}\:\mathrm{like}\:\mathrm{to}\:\mathrm{translate}\:\mathrm{into}\:\mathrm{English}? \\ $$ Terms of Service Privacy Policy…
Question Number 166294 by cortano1 last updated on 18/Feb/22 $$\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{1}} ^{{x}} \:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\:\:\:\left({f}^{−\mathrm{1}} \left(\mathrm{0}\right)\right)'=? \\ $$ Commented by cortano1 last updated on…
Question Number 166257 by mnjuly1970 last updated on 16/Feb/22 $$ \\ $$$$\:\:\:\lfloor{x}\rfloor\lfloor\mathrm{2}{x}\rfloor\lfloor\mathrm{3}{x}\rfloor=\:\mathrm{6} \\ $$$$\:\:\:\:\:\:\:{x}=\overset{} {?}\: \\ $$ Commented by MJS_new last updated on 16/Feb/22 $$\mathrm{1}\leqslant{x}<\frac{\mathrm{4}}{\mathrm{3}}…
Question Number 166254 by mnjuly1970 last updated on 16/Feb/22 $$ \\ $$$$\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}.\:\left({n}+\mathrm{1}\:\right)}\:\:\overset{?} {=}\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}} \\ $$$$\:\:\:\:\:−−−−+ \\ $$ Answered by Kamel_Ben last…
Question Number 166246 by mnjuly1970 last updated on 16/Feb/22 Answered by Mathspace last updated on 18/Feb/22 $${I}=_{{by}\:{parts}} \:\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right).\mathrm{2}{ln}\left(\mathrm{1}−{x}^{\mathrm{2}}…