Menu Close

Category: Differentiation

solve-the-differential-equation-dy-dx-y-x-1-1-x-1-

Question Number 165849 by daus last updated on 09/Feb/22 $${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$ Commented by mkam last updated on 10/Feb/22 $$\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)=\:\frac{\mathrm{1}}{\boldsymbol{{x}}−\mathrm{1}}\:\:,\:\boldsymbol{{Q}}\left(\boldsymbol{{x}}\right)\:=\:\frac{\mathrm{1}}{\boldsymbol{{x}}+\mathrm{1}} \\ $$$$ \\…

Given-that-y-1-x-a-Show-that-y-n-1-n-n-x-n-1-b-Find-an-expression-for-y-n-1-y-n-

Question Number 165641 by nadovic last updated on 05/Feb/22 $$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Given}\:\mathrm{that}\:\:{y}\:=\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\left({a}\right)\:\mathrm{Show}\:\mathrm{that}\:\:{y}^{\left({n}\right)} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{{x}^{{n}+\mathrm{1}} } \\ $$$$\left({b}\right)\:\mathrm{Find}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for}\:{y}^{\left({n}−\mathrm{1}\right)} +\:{y}^{\left({n}\right)} \\ $$$$ \\ $$ Answered by aleks041103…

Question-165599

Question Number 165599 by mnjuly1970 last updated on 05/Feb/22 Answered by MJS_new last updated on 05/Feb/22 $${f}\left({x}\right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:−\mathrm{1}<{x}<\mathrm{1}\:\Rightarrow\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}<{f}\left({x}\right)\leqslant\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact:…

t-0-pi-2-sin-x-t-cos-x-2-dx-find-the-value-of-the-extermum-of-t-

Question Number 165581 by mnjuly1970 last updated on 04/Feb/22 $$ \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:{sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\:\mathrm{2}} {dx} \\ $$$${find}\:\:{the}\:\:{value}\:{of}\:{the}\:{extermum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:\:\:\varphi\:\left({t}\right). \\ $$ Answered by aleks041103 last…

Given-f-x-x-1-x-2-find-minimum-value-of-function-h-x-f-x-3-x-1-

Question Number 100032 by bobhans last updated on 24/Jun/20 $$\mathrm{Given}\:\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\right)\:=\:\mathrm{x}^{\mathrm{2}} \:.\:\mathrm{find}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{function}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}\right)−\frac{\mathrm{3}}{\mathrm{x}−\mathrm{1}} \\ $$ Commented by john santu last updated on 24/Jun/20 $$\mathrm{let}\:\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\:=\:\mathrm{z}\:\Rightarrow\mathrm{xz}+\mathrm{z}\:=\:\mathrm{x} \\…