Menu Close

Category: Differentiation

use-power-series-solution-method-to-solve-the-ODE-y-xy-0-

Question Number 99646 by 24224 Opiyo Kamuki last updated on 22/Jun/20 $$\boldsymbol{{use}}\:\boldsymbol{{power}}\:\boldsymbol{{series}}\:\boldsymbol{{solution}}\:\boldsymbol{{method}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{ODE}} \\ $$$$\boldsymbol{{y}}''−\boldsymbol{{xy}}=\mathrm{0} \\ $$ Answered by MWSuSon last updated on 22/Jun/20 $$\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty}…

Question-165168

Question Number 165168 by saboorhalimi last updated on 26/Jan/22 Answered by mahdipoor last updated on 26/Jan/22 $$\frac{{dy}}{{dx}}=\frac{{dy}/{dt}}{{dx}/{dt}}=\frac{\mathrm{3}{t}^{\mathrm{2}} }{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}}=\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{d}\left({dy}/{dx}\right)}{{dx}}=\frac{\frac{{d}\left({dy}/{dx}\right)}{{dt}}}{\frac{{dx}}{{dt}}}=\frac{\frac{−\mathrm{4}\left(\mathrm{6}{t}\right)}{\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{2}}…

Question-99562

Question Number 99562 by MamunSarker last updated on 21/Jun/20 Answered by abdomathmax last updated on 21/Jun/20 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sinx}^{\mathrm{cosx}} \:+\mathrm{cosx}^{\mathrm{sinx}} \:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{\mathrm{cosxln}\left(\mathrm{sinx}\right)} \:+\mathrm{e}^{\mathrm{sinxln}\left(\mathrm{cosx}\right)} \:\Rightarrow \\ $$$$\mathrm{f}^{'}…

x-2-xy-y-2-3y-10-find-the-value-of-dy-dx-at-x-2-

Question Number 99357 by bobhans last updated on 20/Jun/20 $$\mathrm{x}^{\mathrm{2}} +\mathrm{xy}\:+\mathrm{y}^{\mathrm{2}} −\mathrm{3y}\:=\:\mathrm{10}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\mathrm{at}\:\mathrm{x}=\:\mathrm{2}\: \\ $$ Commented by bemath last updated on 20/Jun/20 $$\mathrm{x}=\mathrm{2}\:\Rightarrow\mathrm{4}+\mathrm{2y}+\mathrm{y}^{\mathrm{2}} −\mathrm{3y}−\mathrm{10}=\mathrm{0}…

How-fast-is-the-height-of-a-balloon-changing-when-500m-away-at-an-angle-of-pi-4-rad-and-the-angle-is-increasing-by-0-2rad-min-

Question Number 33676 by NECx last updated on 21/Apr/18 $${How}\:{fast}\:{is}\:{the}\:{height}\:{of}\:{a}\:{balloon} \\ $$$${changing}\:{when}\:\mathrm{500}{m}\:{away}\:{at}\:{an} \\ $$$${angle}\:{of}\:\pi/\mathrm{4}\:{rad}\:{and}\:{the}\:{angle}\:{is} \\ $$$${increasing}\:{by}\:\mathrm{0}.\mathrm{2}{rad}/{min} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com