Question Number 99357 by bobhans last updated on 20/Jun/20 $$\mathrm{x}^{\mathrm{2}} +\mathrm{xy}\:+\mathrm{y}^{\mathrm{2}} −\mathrm{3y}\:=\:\mathrm{10}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\mathrm{at}\:\mathrm{x}=\:\mathrm{2}\: \\ $$ Commented by bemath last updated on 20/Jun/20 $$\mathrm{x}=\mathrm{2}\:\Rightarrow\mathrm{4}+\mathrm{2y}+\mathrm{y}^{\mathrm{2}} −\mathrm{3y}−\mathrm{10}=\mathrm{0}…
Question Number 99260 by Ar Brandon last updated on 19/Jun/20 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{xy}'−\mathrm{y}+\frac{\mathrm{2x}+\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$ Answered by Mr.D.N. last updated on 19/Jun/20 Commented by…
Question Number 164747 by mathlove last updated on 21/Jan/22 $${faind}\:\:\frac{{dy}}{{dx}} \\ $$$${sin}^{−\mathrm{1}} \left({xy}\right)={csc}^{−\mathrm{1}} \left({x}−{y}\right) \\ $$ Answered by mahdipoor last updated on 21/Jan/22 $${sin}^{−\mathrm{1}} \left({xy}\right)={sin}^{−\mathrm{1}}…
Question Number 33676 by NECx last updated on 21/Apr/18 $${How}\:{fast}\:{is}\:{the}\:{height}\:{of}\:{a}\:{balloon} \\ $$$${changing}\:{when}\:\mathrm{500}{m}\:{away}\:{at}\:{an} \\ $$$${angle}\:{of}\:\pi/\mathrm{4}\:{rad}\:{and}\:{the}\:{angle}\:{is} \\ $$$${increasing}\:{by}\:\mathrm{0}.\mathrm{2}{rad}/{min} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 164716 by cortano1 last updated on 21/Jan/22 $$\:\:\:{find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:{f}\left({x}\right)=\mathrm{4sin}\:\mathrm{2}{x}−\mathrm{5sin}\:{x}−\mathrm{5cos}\:{x}+\mathrm{6} \\ $$ Answered by bobhans last updated on 21/Jan/22 $$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{4cos}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{2x}\right)−\mathrm{5}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)+\mathrm{6} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{4cos}\:\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)−\mathrm{5}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)+\mathrm{6} \\…
Question Number 164671 by mnjuly1970 last updated on 20/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\:\:{solve}\: \\ $$$$\:\:\:\:\:\:{cos}^{\:\mathrm{3}} \left({x}\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}}\: \\ $$$$\:\:\:\:\:\:\:\:\:{adopted}\:{from}\:{youtube}\:… \\ $$$$ \\ $$ Commented by MJS_new…
Question Number 164653 by mnjuly1970 last updated on 20/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:−\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{−\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\…
Question Number 164547 by mnjuly1970 last updated on 21/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\:\:{prove} \\ $$$$\: \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\sqrt{{x}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{3}} \:}\:{dx}\:\overset{?} {=}\:\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{36}}\: \\ $$$$\:\:\:\:\:\:−−{m}.{n}−−\: \\ $$$$…
Question Number 99003 by bramlex last updated on 18/Jun/20 $${Given}\:\mathrm{5}{x}−\mathrm{3}{y}=\mathrm{6}\:.\:{find}\:{min}\:{value} \\ $$$${of}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} \:? \\ $$ Answered by bobhans last updated on 18/Jun/20 $$\mathrm{let}\:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}}…
Question Number 33407 by NECx last updated on 15/Apr/18 $${if}\:{y}={x}!\:{find}\:{dy}/{dx} \\ $$ Answered by MJS last updated on 15/Apr/18 $$\mathrm{for}\:{x}\in\mathbb{N}\:\mathrm{no}\:\mathrm{derivate}\:\mathrm{exists} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{use} \\ $$$${y}={x}!=\Gamma\left({x}\right)=\underset{\mathrm{0}} {\overset{\infty}…