Question Number 33406 by NECx last updated on 15/Apr/18 $${Find}\:{the}\:{half}\:{derivative}\:{of}\:{y}=\mathrm{ln}\:{x} \\ $$ Commented by MJS last updated on 15/Apr/18 $$\mathrm{what}'\mathrm{s}\:\mathrm{a}\:\mathrm{half}\:\mathrm{derivate}? \\ $$ Commented by NECx…
Question Number 98932 by mhmd last updated on 17/Jun/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 164462 by ajfour last updated on 17/Jan/22 $${Find}\:{x},\:{such}\:{that}\:{f}\left({x}\right)\:{is}\:{minimum}. \\ $$$${f}\left({x}\right)=\left\{\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)\right\}^{\mathrm{2}} \\ $$ Commented by ajfour last updated on 17/Jan/22 $${did}. \\…
Question Number 98895 by bramlex last updated on 17/Jun/20 $${Is}\:\frac{{dy}}{{dx}}\:{if}\:{y}^{\mathrm{3}} +{x}^{\mathrm{3}} −\mathrm{2}{x}=\mathrm{1}\:?\: \\ $$ Answered by bramlex last updated on 17/Jun/20 Answered by mathmax by…
Question Number 164366 by Zaynal last updated on 16/Jan/22 $$\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$ Commented by cortano1 last updated on 16/Jan/22 $$\:{y}\:=\:{e}^{\mathrm{tan}\:{x}} \\ $$$$\:\mathrm{ln}\:{y}\:=\:\mathrm{tan}\:{x}…
Question Number 164339 by mnjuly1970 last updated on 16/Jan/22 $$ \\ $$$$\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\:\:\::\:\:\:{cos}^{\:\mathrm{2}} \left({A}\:\right)+\:{cos}^{\:\mathrm{2}} \left({B}\:\right)+\:{cos}^{\:\mathrm{2}} \left(\:{C}\:\right)=\mathrm{1}\:\:. \\ $$$$\:\:\:\:\:\:\:\:{Prove}\:{that}\:\:{A}\overset{\Delta} {{B}C}\:\:\:{is}\:\:\:{right}\:{angled}. \\ $$$$\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$…
Question Number 33208 by abdo imad last updated on 12/Apr/18 $${solve}\:{the}\:{d}.{e}.\:{x}^{''} \left({t}\right)\:+\mathrm{3}{x}^{'} \left({t}\right)\:+\mathrm{2}\:{x}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{{t}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33209 by abdo imad last updated on 12/Apr/18 $${solve}\:{the}\:{system}\:\:{x}^{'} \:={ay}\:{and}\:{y}^{'} \:=−{ax}\:.\:{afrom}\:{R}\:\:,{a}\neq\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33122 by abdo imad last updated on 10/Apr/18 $${let}\:{considere}\:{f}\:{and}\:{u}\:{differenciable}\:{function}\:{prove} \\ $$$${that}\:\frac{{d}}{{dt}}\left(\:\int_{{a}} ^{{u}\left({t}\right)} {f}\left({t},{x}\right){dx}\right)=\int_{{a}} ^{{u}\left({t}\right)} \:\frac{\partial{f}}{\partial{t}}\left({t},{x}\right){dx}\:+{f}\left({t},{u}\left({t}\right)\right){u}^{'} \left({t}\right) \\ $$ Terms of Service Privacy Policy…
Question Number 164103 by mnjuly1970 last updated on 14/Jan/22 $$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$\: \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:\right).\frac{{dx}}{{x}\:\sqrt{\:\mathrm{1}−{x}^{\:\mathrm{2}} }}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:−−\:{m}.{n}−− \\ $$$$ \\…