Question Number 196408 by Erico last updated on 24/Aug/23 $$\mathrm{Calcul}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{lnt}}{\:\sqrt{\mathrm{t}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}\mathrm{dt} \\ $$ Answered by qaz last updated on 24/Aug/23 $$\int_{\mathrm{0}} ^{\infty} \frac{{lnt}}{\:\sqrt{{t}}\left(\mathrm{1}+{t}^{\mathrm{2}}…
Question Number 196401 by RoseAli last updated on 24/Aug/23 $$\mathrm{if}\:{y}=\mathrm{sin}\:{x}\: \\ $$$$\mathrm{find}\:\frac{\boldsymbol{{d}}^{\mathrm{2}} }{\boldsymbol{{d}}{y}^{\mathrm{2}} }\mathrm{co}\boldsymbol{{s}}^{\mathrm{7}} \boldsymbol{{x}} \\ $$ Answered by qaz last updated on 24/Aug/23 $$\mathrm{cos}\:^{\mathrm{7}}…
Question Number 196209 by mnjuly1970 last updated on 19/Aug/23 $$ \\ $$$$\:\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({x}−\mathrm{1}\right)^{\:\mathrm{2}} }{\mathrm{ln}^{\mathrm{2}} \left({x}\right)}\:{dx}=\:? \\ $$$$\:\:\:\:\:−−−− \\ $$ Answered by Mathspace last updated…
Question Number 195952 by mnjuly1970 last updated on 13/Aug/23 $$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}+\mathrm{1}} }{{m}^{\mathrm{2}} {n}\:+\:{mn}^{\:\mathrm{2}} }\:\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:−−−−− \\ $$ Answered by…
Question Number 195885 by cortano12 last updated on 12/Aug/23 $$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\sqrt{\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:=\:\mathrm{0}\: \\ $$ Answered by mokys last updated on 12/Aug/23 $$\frac{{dy}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:+\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\:{d}\left(\mathrm{0}\right) \\…
Question Number 195878 by wat last updated on 12/Aug/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195180 by mustafazaheen last updated on 26/Jul/23 $$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$ Answered by…
Question Number 195137 by mathlove last updated on 25/Jul/23 $${f}\left({x}\right)={arctan}\left(\frac{\mathrm{4}{sinx}}{\mathrm{3}+\mathrm{5}{cosx}}\right)\:\:\:{then}\:{f}^{'} \left(\frac{\pi}{\mathrm{3}}\right)=? \\ $$ Answered by Tokugami last updated on 02/Sep/23 $${f}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{\mathrm{4sin}\:{x}}{\mathrm{3}+\mathrm{5cos}\:{x}}\right)^{\mathrm{2}} }\:\frac{{d}}{{dx}}\left(\frac{\mathrm{4sin}\:{x}}{\mathrm{3}+\mathrm{5cos}\:{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{16sin}^{\mathrm{2}} {x}}{\left(\mathrm{3}+\mathrm{5cos}\:{x}\right)^{\mathrm{2}}…
Question Number 195170 by mathlove last updated on 25/Jul/23 $${f}\left({x}\right)=\begin{cases}{{x}^{\mathrm{7}} +\mathrm{2}{x}+\mathrm{1}\:\:\:\:\:\:\:;{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{4}\:\:\:\:\:\:\:\:;{x}<\mathrm{1}}\end{cases} \\ $$$${f}^{'} \left(\mathrm{1}\right)=? \\ $$ Answered by MM42 last updated on 25/Jul/23 $${f}\left(\mathrm{1}\right)\:,\:{not}\:{available}\:{so}…
Question Number 194852 by mustafazaheen last updated on 17/Jul/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{cosx}\right)^{\mathrm{log}\left(\mathrm{x}\right)} =? \\ $$$$ \\ $$ Answered by MM42 last updated on 17/Jul/23…