Menu Close

Category: Differentiation

prove-that-n-1-2n-1-2n-1-2-n-2n-1-2-pi-2-4-1-

Question Number 163045 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(\:\mathrm{2}{n}+\mathrm{1}\:\right)!!}{\left(\mathrm{2}{n}\:\right)!!}\:\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \left(\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}−\mathrm{1} \\ $$ Answered by qaz…

0-x-sin-x-x-3-dx-solution-I-B-P-1-2-x-2-x-sin-x-0-1-2-0-1-cos-x-x-2-dx-1-2-0-2sin-2-

Question Number 163033 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}\:−\:{sin}\:\left({x}\:\right)}{{x}^{\:\mathrm{3}} }{dx} \\ $$$$−−−\:{solution}−−− \\ $$$$\:\:\:\:\:\Omega\overset{\mathscr{I}.\mathscr{B}.\mathscr{P}} {=}\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}\:{x}^{\:\mathrm{2}} }\:\left({x}−{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{cos}\:\left({x}\right)}{{x}^{\:\mathrm{2}}…

In-each-week-the-growth-of-a-plant-is-two-thirds-the-growth-of-the-previous-week-The-plant-grows-12-cm-in-the-first-week-a-Calculate-the-growth-of-the-plant-in-b-the-limiting-height-of-the-pant

Question Number 97483 by Rio Michael last updated on 08/Jun/20 $$\mathrm{In}\:\mathrm{each}\:\mathrm{week}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plant}\:\mathrm{is}\:\mathrm{two}−\mathrm{thirds} \\ $$$$\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{previous}\:\mathrm{week}. \\ $$$$\mathrm{The}\:\mathrm{plant}\:\mathrm{grows}\:\mathrm{12}\:\mathrm{cm}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{week}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plant}\:\mathrm{in}\: \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pant} \\ $$ Commented by bobhans last…

prove-that-i-n-0-1-n-n-1-2-cosh-n-1-2-pi-pi-4-ii-0-1-sin-pi-x-x-x-1-x-1-x-dx-1-x-pi-4-

Question Number 163002 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}−{x}\:\right)^{\:\mathrm{1}−{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}}…

Question-97463

Question Number 97463 by john santu last updated on 08/Jun/20 Commented by bobhans last updated on 08/Jun/20 $$\frac{\mathrm{4}}{\mathrm{t}−\mathrm{4}}\:=\:\frac{\mathrm{R}}{\:\sqrt{\mathrm{R}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\:\Rightarrow\:\mathrm{16}\left(\mathrm{R}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} \right)=\mathrm{R}^{\mathrm{2}} \left(\mathrm{t}^{\mathrm{2}} −\mathrm{8t}+\mathrm{16}\right) \\…

Verify-if-the-series-n-1-n-2n-5-n-2-3n-2-is-convergent-or-divergent-What-method-is-easier-

Question Number 97418 by Rio Michael last updated on 08/Jun/20 $$\mathrm{Verify}\:\mathrm{if}\:\mathrm{the}\:\mathrm{series}\: \\ $$$$\:\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}{n}\:+\:\mathrm{5}}{{n}^{\mathrm{2}} \:+\mathrm{3}{n}\:+\:\mathrm{2}}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}. \\ $$$$\mathrm{What}\:\mathrm{method}\:\mathrm{is}\:\mathrm{easier}? \\ $$ Commented by Tony Lin last…

0-e-x-2-ln-x-x-dx-1-4-

Question Number 162924 by mnjuly1970 last updated on 02/Jan/22 $$\: \\ $$$$\:\boldsymbol{\phi}\:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{2}} } .\mathrm{ln}\left(\:{x}\:\right)}{\:\sqrt{{x}}}\:{dx}=\lambda\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$ Answered…