Question Number 163271 by mnjuly1970 last updated on 05/Jan/22 $$ \\ $$$$\:\:\:\:\:\:{put}\::\:\:{gcd}\left(\:{a}\:,\:{b}\:\right)=\:\left({a},\:{b}\:\right) \\ $$$$\:\:\:\:\:\:\:{if}\:\:\:\left(\:{a}\:,{b}\:\right)=\:\left({a}\:,{c}\:\right)=\:\left({b}\:,{c}\:\right)=\mathrm{1} \\ $$$${prove}\:{that}\::\:\:\left({abc}\:,\:{ab}\:+{ac}\:+{bc}\:\right)=\mathrm{1} \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 163257 by mnjuly1970 last updated on 05/Jan/22 $$ \\ $$$$\:\:\:\:\:\mathscr{R}{e}\:\left(\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{\mathrm{1}−\:{x}^{\:\mathrm{2}} }\:\right){dx}\:\right)=? \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 163191 by mnjuly1970 last updated on 04/Jan/22 Commented by cortano1 last updated on 05/Jan/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163134 by mnjuly1970 last updated on 04/Jan/22 $$ \\ $$$$\:\:\:\:{prove}\:\:{or}\:{disprove} \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{2}\pi} ^{\:\mathrm{4}\pi} \frac{\:{sin}\left({x}\right)}{{x}}\:{dx}\:>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{because} \\ $$$$\:\int_{\mathrm{2}\pi} ^{\:\mathrm{3}\pi} \frac{\:{sin}\left({x}\:\right)}{{x}}\:{dx}\:>\:\int_{\mathrm{3}\pi} ^{\:\mathrm{4}\pi}…
Question Number 163080 by tounghoungko last updated on 03/Jan/22 $$\:\:\:\:\:\:\:{F}\left({x}\right)=\:\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\left.\begin{matrix}{{local}\:{maximum}}\\{{absolut}\:{maximum}}\end{matrix}\right\}\:=? \\ $$ Answered by mahdipoor last updated on 03/Jan/22 $${F}\:'=\frac{\mathrm{2}}{\mathrm{3}}\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\frac{−\mathrm{1}}{\mathrm{3}}}…
Question Number 163045 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(\:\mathrm{2}{n}+\mathrm{1}\:\right)!!}{\left(\mathrm{2}{n}\:\right)!!}\:\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \left(\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}−\mathrm{1} \\ $$ Answered by qaz…
Question Number 31972 by abdo imad last updated on 17/Mar/18 $$\left.{solve}\:{inside}\:\right]−\mathrm{1},\mathrm{1}\left[\:{the}\:{d}.{e}.\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{y}^{'} \:+{y}\:={e}^{−\mathrm{2}{x}} \:.\right. \\ $$ Commented by math khazana by abdo last updated on…
Question Number 31971 by abdo imad last updated on 17/Mar/18 $${let}\:{consider}\:{the}\:{d}.{e}.\:{x}\left({x}−\mathrm{1}\right){y}^{''} \:+\mathrm{3}{xy}^{'} \:+{y}\:=\mathrm{0} \\ $$$${find}\:{a}\:{solution}\:{at}\:{form}\:\Sigma{a}_{{n}} {x}^{{n}} \:\:. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 163033 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}\:−\:{sin}\:\left({x}\:\right)}{{x}^{\:\mathrm{3}} }{dx} \\ $$$$−−−\:{solution}−−− \\ $$$$\:\:\:\:\:\Omega\overset{\mathscr{I}.\mathscr{B}.\mathscr{P}} {=}\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}\:{x}^{\:\mathrm{2}} }\:\left({x}−{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{cos}\:\left({x}\right)}{{x}^{\:\mathrm{2}}…
Question Number 97483 by Rio Michael last updated on 08/Jun/20 $$\mathrm{In}\:\mathrm{each}\:\mathrm{week}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plant}\:\mathrm{is}\:\mathrm{two}−\mathrm{thirds} \\ $$$$\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{previous}\:\mathrm{week}. \\ $$$$\mathrm{The}\:\mathrm{plant}\:\mathrm{grows}\:\mathrm{12}\:\mathrm{cm}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{week}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plant}\:\mathrm{in}\: \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pant} \\ $$ Commented by bobhans last…