Menu Close

Category: Differentiation

Question-162701

Question Number 162701 by mnjuly1970 last updated on 31/Dec/21 Answered by phanphuoc last updated on 31/Dec/21 $$\phi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{b}} {dx}=\mathrm{1}/\mathrm{2}{B}\left(\left({a}+\mathrm{1}\right)/\mathrm{2},\left(\mathrm{2}{b}+\mathrm{1}\right)/\mathrm{2}\right) \\ $$$$\partial^{\mathrm{2}} \left(\phi\right)/\partial\left({a}^{\mathrm{2}}…

if-it-is-H-x-y-G-x-y-k-class-Homogeneous-function-using-aspecific-provision-find-the-general-solution-to-the-following-differential-equation-y-H-x-y-dx-G-x-y-ydx-xdy-0-please-sir-helpe-me-no-

Question Number 97138 by mhmd last updated on 07/Jun/20 $${if}\:{it}\:{is}\:{H}\left({x},{y}\right)\:,{G}\left({x},{y}\right)\:{k}\:{class}\:{Homogeneous}\:{function}\:{using}\:{aspecific}\:{provision}\:{find} \\ $$$${the}\:{general}\:{solution}\:{to}\:{the}\:{following}\:{differential}\:{equation} \\ $$$${y}\:{H}\left({x},{y}\right){dx}+{G}\left({x},{y}\right)\left({ydx}−{xdy}\right)=\mathrm{0} \\ $$$$ \\ $$$${please}\:{sir}\:{helpe}\:{me}\:?\: \\ $$$${no}\:{one}\:{help}\:{me}\:? \\ $$ Terms of Service…

y-x-Find-dy-dx-by-first-principle-

Question Number 162675 by Mathematification last updated on 31/Dec/21 $${y}\:=\:\sqrt{{x}} \\ $$$${Find}\:\:\:\frac{{dy}}{{dx}}\:\:{by}\:{first}\:{principle}. \\ $$ Answered by tounghoungko last updated on 31/Dec/21 $$\:\frac{{dy}}{{dx}}\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:=\:\underset{{h}\rightarrow\mathrm{0}}…

using-aparticular-theory-find-the-general-solution-to-the-following-differential-equation-f-x-y-dx-g-x-y-dy-0-help-me-sir-please-

Question Number 97137 by mhmd last updated on 06/Jun/20 $${using}\:{aparticular}\:{theory}\:,{find}\:{the}\:{general}\:{solution}\:{to}\: \\ $$$${the}\:{following}\:{differential}\:{equation}\: \\ $$$${f}\left({x}+{y}\right){dx}+{g}\left({x}+{y}\right){dy}=\mathrm{0}\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$ Commented by prakash jain last updated on…

differenciate-using-implicit-function-2x-4y-sin-xy-3-

Question Number 162516 by CM last updated on 30/Dec/21 $${differenciate}\:{using}\:{implicit}\:{function}\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}=\mathrm{3} \\ $$ Commented by cortano last updated on 30/Dec/21 $$\:\frac{{d}}{{dx}}\left(\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}\right)\:=\:\frac{{d}}{{dx}}\left(\mathrm{3}\right) \\ $$$$\:\mathrm{2}+\mathrm{4}{y}'+\left({y}+{xy}'\right)\:\mathrm{cos}\:{xy}\:=\mathrm{0} \\ $$$$\:\mathrm{4}{y}'+{y}\:\mathrm{cos}\:{xy}\:+{xy}'\:\mathrm{cos}\:{xy}\:=−\mathrm{2} \\…