Menu Close

Category: Differentiation

prove-that-i-n-0-1-n-n-1-2-cosh-n-1-2-pi-pi-4-ii-0-1-sin-pi-x-x-x-1-x-1-x-dx-1-x-pi-4-

Question Number 163002 by mnjuly1970 last updated on 03/Jan/22 $$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}−{x}\:\right)^{\:\mathrm{1}−{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}}…

Question-97463

Question Number 97463 by john santu last updated on 08/Jun/20 Commented by bobhans last updated on 08/Jun/20 $$\frac{\mathrm{4}}{\mathrm{t}−\mathrm{4}}\:=\:\frac{\mathrm{R}}{\:\sqrt{\mathrm{R}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\:\Rightarrow\:\mathrm{16}\left(\mathrm{R}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} \right)=\mathrm{R}^{\mathrm{2}} \left(\mathrm{t}^{\mathrm{2}} −\mathrm{8t}+\mathrm{16}\right) \\…

Verify-if-the-series-n-1-n-2n-5-n-2-3n-2-is-convergent-or-divergent-What-method-is-easier-

Question Number 97418 by Rio Michael last updated on 08/Jun/20 $$\mathrm{Verify}\:\mathrm{if}\:\mathrm{the}\:\mathrm{series}\: \\ $$$$\:\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}{n}\:+\:\mathrm{5}}{{n}^{\mathrm{2}} \:+\mathrm{3}{n}\:+\:\mathrm{2}}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}. \\ $$$$\mathrm{What}\:\mathrm{method}\:\mathrm{is}\:\mathrm{easier}? \\ $$ Commented by Tony Lin last…

0-e-x-2-ln-x-x-dx-1-4-

Question Number 162924 by mnjuly1970 last updated on 02/Jan/22 $$\: \\ $$$$\:\boldsymbol{\phi}\:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{2}} } .\mathrm{ln}\left(\:{x}\:\right)}{\:\sqrt{{x}}}\:{dx}=\lambda\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$ Answered…

Question-162701

Question Number 162701 by mnjuly1970 last updated on 31/Dec/21 Answered by phanphuoc last updated on 31/Dec/21 $$\phi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{b}} {dx}=\mathrm{1}/\mathrm{2}{B}\left(\left({a}+\mathrm{1}\right)/\mathrm{2},\left(\mathrm{2}{b}+\mathrm{1}\right)/\mathrm{2}\right) \\ $$$$\partial^{\mathrm{2}} \left(\phi\right)/\partial\left({a}^{\mathrm{2}}…

if-it-is-H-x-y-G-x-y-k-class-Homogeneous-function-using-aspecific-provision-find-the-general-solution-to-the-following-differential-equation-y-H-x-y-dx-G-x-y-ydx-xdy-0-please-sir-helpe-me-no-

Question Number 97138 by mhmd last updated on 07/Jun/20 $${if}\:{it}\:{is}\:{H}\left({x},{y}\right)\:,{G}\left({x},{y}\right)\:{k}\:{class}\:{Homogeneous}\:{function}\:{using}\:{aspecific}\:{provision}\:{find} \\ $$$${the}\:{general}\:{solution}\:{to}\:{the}\:{following}\:{differential}\:{equation} \\ $$$${y}\:{H}\left({x},{y}\right){dx}+{G}\left({x},{y}\right)\left({ydx}−{xdy}\right)=\mathrm{0} \\ $$$$ \\ $$$${please}\:{sir}\:{helpe}\:{me}\:?\: \\ $$$${no}\:{one}\:{help}\:{me}\:? \\ $$ Terms of Service…