Question Number 97368 by Riad last updated on 07/Jun/20 Commented by Tony Lin last updated on 07/Jun/20 $$\left(\mathrm{1}\right)\left({a}\right)\left({i}\right) \\ $$$$\int{x}^{\mathrm{2}} {tan}^{−\mathrm{1}} {xdx} \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}{tan}^{−\mathrm{1}}…
Question Number 162804 by mnjuly1970 last updated on 01/Jan/22 $$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$ Answered by mindispower last updated…
Question Number 97189 by pticantor last updated on 06/Jun/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162701 by mnjuly1970 last updated on 31/Dec/21 Answered by phanphuoc last updated on 31/Dec/21 $$\phi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{b}} {dx}=\mathrm{1}/\mathrm{2}{B}\left(\left({a}+\mathrm{1}\right)/\mathrm{2},\left(\mathrm{2}{b}+\mathrm{1}\right)/\mathrm{2}\right) \\ $$$$\partial^{\mathrm{2}} \left(\phi\right)/\partial\left({a}^{\mathrm{2}}…
Question Number 97138 by mhmd last updated on 07/Jun/20 $${if}\:{it}\:{is}\:{H}\left({x},{y}\right)\:,{G}\left({x},{y}\right)\:{k}\:{class}\:{Homogeneous}\:{function}\:{using}\:{aspecific}\:{provision}\:{find} \\ $$$${the}\:{general}\:{solution}\:{to}\:{the}\:{following}\:{differential}\:{equation} \\ $$$${y}\:{H}\left({x},{y}\right){dx}+{G}\left({x},{y}\right)\left({ydx}−{xdy}\right)=\mathrm{0} \\ $$$$ \\ $$$${please}\:{sir}\:{helpe}\:{me}\:?\: \\ $$$${no}\:{one}\:{help}\:{me}\:? \\ $$ Terms of Service…
Question Number 162675 by Mathematification last updated on 31/Dec/21 $${y}\:=\:\sqrt{{x}} \\ $$$${Find}\:\:\:\frac{{dy}}{{dx}}\:\:{by}\:{first}\:{principle}. \\ $$ Answered by tounghoungko last updated on 31/Dec/21 $$\:\frac{{dy}}{{dx}}\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:=\:\underset{{h}\rightarrow\mathrm{0}}…
Question Number 97137 by mhmd last updated on 06/Jun/20 $${using}\:{aparticular}\:{theory}\:,{find}\:{the}\:{general}\:{solution}\:{to}\: \\ $$$${the}\:{following}\:{differential}\:{equation}\: \\ $$$${f}\left({x}+{y}\right){dx}+{g}\left({x}+{y}\right){dy}=\mathrm{0}\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$ Commented by prakash jain last updated on…
Question Number 97115 by bobhans last updated on 06/Jun/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:\mathrm{on}\:\mathrm{hyperbola}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{1}\right)\: \\ $$ Answered by mr W last updated on 06/Jun/20 $${x}^{\mathrm{2}}…
Question Number 97011 by ~blr237~ last updated on 06/Jun/20 $${Let}\:\:\Gamma\:{be}\:{the}\:{gamma}\:{function}\:\: \\ $$$$\:{Prove}\:{that}\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{Res}\left(\Gamma;−{n}\right)=\:{e} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162516 by CM last updated on 30/Dec/21 $${differenciate}\:{using}\:{implicit}\:{function}\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}=\mathrm{3} \\ $$ Commented by cortano last updated on 30/Dec/21 $$\:\frac{{d}}{{dx}}\left(\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}\right)\:=\:\frac{{d}}{{dx}}\left(\mathrm{3}\right) \\ $$$$\:\mathrm{2}+\mathrm{4}{y}'+\left({y}+{xy}'\right)\:\mathrm{cos}\:{xy}\:=\mathrm{0} \\ $$$$\:\mathrm{4}{y}'+{y}\:\mathrm{cos}\:{xy}\:+{xy}'\:\mathrm{cos}\:{xy}\:=−\mathrm{2} \\…