Question Number 162424 by mnjuly1970 last updated on 29/Dec/21 $$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:−\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:−\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}− \\ $$ Answered…
Question Number 162395 by mnjuly1970 last updated on 29/Dec/21 Commented by Tawa11 last updated on 07/Jan/22 $$\mathrm{Great}\:\mathrm{sir} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 162377 by mnjuly1970 last updated on 29/Dec/21 $$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:−\mathrm{2}\pi^{\:\mathrm{3}} −\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$ Commented by aleks041103 last…
Question Number 162371 by cortano last updated on 29/Dec/21 $$\:\:{If}\:{x}\:\in\mathbb{R}\:{the}\:{maximum}\:{value}\: \\ $$$$\:{of}\:\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{7}}\:{is}\:… \\ $$ Answered by mindispower last updated on 29/Dec/21 $${g}\left({x}\right)=\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}}…
Question Number 162336 by mnjuly1970 last updated on 28/Dec/21 $$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+…+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$ Answered by mindispower…
Question Number 31113 by NECx last updated on 02/Mar/18 $${Two}\:{lines}\:{through}\:{the}\:{point}\:\left(\mathrm{1},−\mathrm{3}\right) \\ $$$${are}\:{tamgent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} . \\ $$$${Find}\:{the}\:{equation}\:{of}\:{these}\:{two} \\ $$$${lines}\:{and}\:{make}\:{a}\:{sketch}\:{to}\:{verify} \\ $$$${your}\:{results}. \\ $$ Answered by Tinkutara last…
Question Number 162168 by MikeH last updated on 27/Dec/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integro}−\mathrm{differential} \\ $$$$\mathrm{equation}: \\ $$$$\:{i}\left({t}\right)\:+\:\mathrm{4}\frac{{di}}{{dt}}\:+\:\int{i}\left({t}\right){dt}\:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{3}{t}+\:\mathrm{60}°\right) \\ $$$$\mathrm{where}\:{i}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sinulsodial}\:\mathrm{current}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31099 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)\:−{arctanx}}{{x}}{dx}. \\ $$ Commented by abdo imad last updated on 04/Mar/18 $${I}={lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:\:/\:{I}\left(\xi\right)=\:\int_{\mathrm{0}}…
Question Number 96500 by bemath last updated on 02/Jun/20 $$\mathrm{If}\:{x}\:{and}\:{y}\:{real}\:{number}\:{satisfy} \\ $$$$\left({x}+\mathrm{5}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{12}\right)^{\mathrm{2}} =\mathrm{196}\:,\:\mathrm{then}\: \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{is}\: \\ $$ Answered by bobhans last updated…
Question Number 162026 by mnjuly1970 last updated on 25/Dec/21 $$ \\ $$$$\:\:\:\:{prove}\:{that}…. \\ $$$$\: \\ $$$$\:\:\:\:\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}} \:<\:{e}\:<\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}+\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$ Answered by…