Question Number 162675 by Mathematification last updated on 31/Dec/21 $${y}\:=\:\sqrt{{x}} \\ $$$${Find}\:\:\:\frac{{dy}}{{dx}}\:\:{by}\:{first}\:{principle}. \\ $$ Answered by tounghoungko last updated on 31/Dec/21 $$\:\frac{{dy}}{{dx}}\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:=\:\underset{{h}\rightarrow\mathrm{0}}…
Question Number 97137 by mhmd last updated on 06/Jun/20 $${using}\:{aparticular}\:{theory}\:,{find}\:{the}\:{general}\:{solution}\:{to}\: \\ $$$${the}\:{following}\:{differential}\:{equation}\: \\ $$$${f}\left({x}+{y}\right){dx}+{g}\left({x}+{y}\right){dy}=\mathrm{0}\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$ Commented by prakash jain last updated on…
Question Number 97115 by bobhans last updated on 06/Jun/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:\mathrm{on}\:\mathrm{hyperbola}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{1}\right)\: \\ $$ Answered by mr W last updated on 06/Jun/20 $${x}^{\mathrm{2}}…
Question Number 97011 by ~blr237~ last updated on 06/Jun/20 $${Let}\:\:\Gamma\:{be}\:{the}\:{gamma}\:{function}\:\: \\ $$$$\:{Prove}\:{that}\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{Res}\left(\Gamma;−{n}\right)=\:{e} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162516 by CM last updated on 30/Dec/21 $${differenciate}\:{using}\:{implicit}\:{function}\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}=\mathrm{3} \\ $$ Commented by cortano last updated on 30/Dec/21 $$\:\frac{{d}}{{dx}}\left(\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}\right)\:=\:\frac{{d}}{{dx}}\left(\mathrm{3}\right) \\ $$$$\:\mathrm{2}+\mathrm{4}{y}'+\left({y}+{xy}'\right)\:\mathrm{cos}\:{xy}\:=\mathrm{0} \\ $$$$\:\mathrm{4}{y}'+{y}\:\mathrm{cos}\:{xy}\:+{xy}'\:\mathrm{cos}\:{xy}\:=−\mathrm{2} \\…
Question Number 162424 by mnjuly1970 last updated on 29/Dec/21 $$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:−\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:−\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}− \\ $$ Answered…
Question Number 162395 by mnjuly1970 last updated on 29/Dec/21 Commented by Tawa11 last updated on 07/Jan/22 $$\mathrm{Great}\:\mathrm{sir} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 162377 by mnjuly1970 last updated on 29/Dec/21 $$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:−\mathrm{2}\pi^{\:\mathrm{3}} −\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$ Commented by aleks041103 last…
Question Number 162371 by cortano last updated on 29/Dec/21 $$\:\:{If}\:{x}\:\in\mathbb{R}\:{the}\:{maximum}\:{value}\: \\ $$$$\:{of}\:\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{7}}\:{is}\:… \\ $$ Answered by mindispower last updated on 29/Dec/21 $${g}\left({x}\right)=\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}}…
Question Number 162336 by mnjuly1970 last updated on 28/Dec/21 $$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+…+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$ Answered by mindispower…