Question Number 31113 by NECx last updated on 02/Mar/18 $${Two}\:{lines}\:{through}\:{the}\:{point}\:\left(\mathrm{1},−\mathrm{3}\right) \\ $$$${are}\:{tamgent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} . \\ $$$${Find}\:{the}\:{equation}\:{of}\:{these}\:{two} \\ $$$${lines}\:{and}\:{make}\:{a}\:{sketch}\:{to}\:{verify} \\ $$$${your}\:{results}. \\ $$ Answered by Tinkutara last…
Question Number 162168 by MikeH last updated on 27/Dec/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integro}−\mathrm{differential} \\ $$$$\mathrm{equation}: \\ $$$$\:{i}\left({t}\right)\:+\:\mathrm{4}\frac{{di}}{{dt}}\:+\:\int{i}\left({t}\right){dt}\:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{3}{t}+\:\mathrm{60}°\right) \\ $$$$\mathrm{where}\:{i}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sinulsodial}\:\mathrm{current}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31099 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)\:−{arctanx}}{{x}}{dx}. \\ $$ Commented by abdo imad last updated on 04/Mar/18 $${I}={lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:\:/\:{I}\left(\xi\right)=\:\int_{\mathrm{0}}…
Question Number 96500 by bemath last updated on 02/Jun/20 $$\mathrm{If}\:{x}\:{and}\:{y}\:{real}\:{number}\:{satisfy} \\ $$$$\left({x}+\mathrm{5}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{12}\right)^{\mathrm{2}} =\mathrm{196}\:,\:\mathrm{then}\: \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{is}\: \\ $$ Answered by bobhans last updated…
Question Number 162026 by mnjuly1970 last updated on 25/Dec/21 $$ \\ $$$$\:\:\:\:{prove}\:{that}…. \\ $$$$\: \\ $$$$\:\:\:\:\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}} \:<\:{e}\:<\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\right)^{\:{n}+\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$ Answered by…
Question Number 162025 by mnjuly1970 last updated on 25/Dec/21 $$\:\:\:\: \\ $$$$\:\:\:{write}\:\:{the}\:{taylor}\:{expansion}\:{of}\:: \\ $$$$\:\:\:\:\:\:{f}\left({x}\right)=\:{x}^{\:\mathrm{2}} .\:{cos}\left({x}\right)\:\:\:\:{at}\:\:{x}=\mathrm{1} \\ $$$$\:\:\:\:{then}\:\:\:\:\:\:\:\:{f}^{\:\left(\mathrm{5}\:\right)} \left({x}\right)\:\:{at}\:\:{x}=\mathrm{1}\:\:? \\ $$$$ \\ $$ Terms of Service…
Question Number 96467 by john santu last updated on 01/Jun/20 $$\mathrm{Suppose}\:\mathrm{y}\:=\:\mathrm{8}\:;\:\frac{{dy}}{{dx}}\:=\:\mathrm{4}\:\&\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\mid_{{x}=\mathrm{1}} \:=\:−\mathrm{2}\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\left(\mathrm{1}\right)\:\frac{{d}\left({xy}\right)}{{dx}}\:\mid_{{x}=\mathrm{1}} \\ $$$$\left(\mathrm{1}\right)\frac{{d}^{\mathrm{2}} \left({xy}\right)}{{dx}^{\mathrm{2}} }\:\mid_{{x}=\mathrm{1}} \: \\ $$$$…
Question Number 161875 by mnjuly1970 last updated on 23/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30787 by Tinkutara last updated on 25/Feb/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96306 by bemath last updated on 31/May/20 $$\mathrm{Given}\:\mathrm{z}\:=\:\frac{\mathrm{xy}−\mathrm{4y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{4y}^{\mathrm{2}} }\:,\:\mathrm{x},\mathrm{y}\neq\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{z}\: \\ $$ Commented by john santu last updated…