Question Number 161802 by femKaren last updated on 22/Dec/21 Answered by mr W last updated on 22/Dec/21 $${f}\left({x}\right)=\mathrm{cos}^{\mathrm{3}} \:{x}+\mathrm{sin}^{\mathrm{3}} \:{x} \\ $$$${f}'\left({x}\right)=−\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}\:{x}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}\:{x} \\…
Question Number 161750 by CM last updated on 22/Dec/21 $${differenciate}\:{x}\mathrm{sin}\:{x}\mathrm{cos}\:{x} \\ $$ Commented by cortano last updated on 22/Dec/21 $$\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{x}\:\mathrm{sin}\:\mathrm{2}{x}\: \\ $$$$\:\frac{{df}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}{x}+\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{2}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}+{x}\:\mathrm{cos}\:\mathrm{2}{x} \\…
Question Number 96192 by 1549442205 last updated on 30/May/20 $$\mathrm{find}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{sin}\frac{\mathrm{y}}{\mathrm{x}}\:\mathrm{with}\:\mathrm{original}\:\mathrm{condition} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}} \\ $$ Commented by john santu last updated on 30/May/20 $$\mathrm{set}\:{v}\:=\frac{{y}}{{x}}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:{v}\:+{x}\:\frac{{dv}}{{dx}}\:…
Question Number 96185 by bemath last updated on 30/May/20 $$\mathrm{what}\:\mathrm{are}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{function}\:\mathrm{z}\:=\:\mathrm{xy}+\mathrm{5xy}^{\mathrm{2}} +\mathrm{10y} \\ $$ Answered by john santu last updated on 30/May/20 $$\left(\mathrm{1}\right)\:\frac{\partial\mathrm{z}}{\partial{x}}\:=\:{y}+\mathrm{5}{y}^{\mathrm{2}} \:=\:\mathrm{0}\:…
Question Number 30595 by abdo imad last updated on 23/Feb/18 $${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:−\mathrm{2}{cos}\alpha{x}+\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} . \\ $$ Commented by abdo imad last updated on 24/Feb/18 $${roots}\:{of}\:{p}\left({x}\right)={x}^{\mathrm{2}} \:−\mathrm{2}{cos}\alpha\:{x}\:+\mathrm{1}=\mathrm{0}…
Question Number 30567 by abdo imad last updated on 23/Feb/18 $${integrate}\:{xy}^{,} \:+\left({x}−\mathrm{1}\right){y}\:+{y}^{\mathrm{2}} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30517 by abdo imad last updated on 22/Feb/18 $${let}\:{g}\left({x}\right)=\:{e}^{{x}} {cosx}\:\:{find}\:\:{g}^{\left({n}\right)} \left({x}\right)\:. \\ $$ Commented by abdo imad last updated on 24/Feb/18 $${let}\:{use}\:{leibnitzformula}\:\:{g}^{\left({n}\right)} \left({x}\right)=\left({e}^{{x}}…
Question Number 30515 by abdo imad last updated on 22/Feb/18 $${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{find}\:{a}\:{form}\:{of}\:{f}^{\left({n}\right)} \left({x}\right)\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30497 by abdo imad last updated on 22/Feb/18 $${integrate}\:\:\mathrm{2}{xy}^{'} \:−{y}\:=\frac{\mathrm{2}}{\mathrm{3}}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30479 by abdo imad last updated on 22/Feb/18 $${integrate}\:\:{y}^{''} \:−\mathrm{2}{y}^{'} \:+{y}\:={t}\:\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com