Menu Close

Category: Differentiation

Question-161802

Question Number 161802 by femKaren last updated on 22/Dec/21 Answered by mr W last updated on 22/Dec/21 $${f}\left({x}\right)=\mathrm{cos}^{\mathrm{3}} \:{x}+\mathrm{sin}^{\mathrm{3}} \:{x} \\ $$$${f}'\left({x}\right)=−\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}\:{x}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}\:{x} \\…

differenciate-xsin-xcos-x-

Question Number 161750 by CM last updated on 22/Dec/21 $${differenciate}\:{x}\mathrm{sin}\:{x}\mathrm{cos}\:{x} \\ $$ Commented by cortano last updated on 22/Dec/21 $$\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{x}\:\mathrm{sin}\:\mathrm{2}{x}\: \\ $$$$\:\frac{{df}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}{x}+\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{2}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}+{x}\:\mathrm{cos}\:\mathrm{2}{x} \\…

find-a-particular-solution-to-the-equation-y-y-x-sin-y-x-with-original-condition-y-1-pi-2-

Question Number 96192 by 1549442205 last updated on 30/May/20 $$\mathrm{find}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{sin}\frac{\mathrm{y}}{\mathrm{x}}\:\mathrm{with}\:\mathrm{original}\:\mathrm{condition} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}} \\ $$ Commented by john santu last updated on 30/May/20 $$\mathrm{set}\:{v}\:=\frac{{y}}{{x}}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:{v}\:+{x}\:\frac{{dv}}{{dx}}\:…

what-are-critical-points-of-this-function-z-xy-5xy-2-10y-

Question Number 96185 by bemath last updated on 30/May/20 $$\mathrm{what}\:\mathrm{are}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{function}\:\mathrm{z}\:=\:\mathrm{xy}+\mathrm{5xy}^{\mathrm{2}} +\mathrm{10y} \\ $$ Answered by john santu last updated on 30/May/20 $$\left(\mathrm{1}\right)\:\frac{\partial\mathrm{z}}{\partial{x}}\:=\:{y}+\mathrm{5}{y}^{\mathrm{2}} \:=\:\mathrm{0}\:…