Question Number 30419 by abdo imad last updated on 22/Feb/18 $${integrate}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:−\mathrm{2}{x}=\mathrm{0}\:{with}\:{cond}.{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$ Answered by sma3l2996 last updated on 24/Feb/18 $$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}'={x}\left(\mathrm{2}−{y}\right) \\…
Question Number 30420 by abdo imad last updated on 22/Feb/18 $${integrate}\:{y}^{''} =\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}^{'} \right)^{\mathrm{2}} }\:\:\:\:\:. \\ $$ Answered by sma3l2996 last updated on 24/Feb/18 $$\frac{{dy}'}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} }…
Question Number 30417 by abdo imad last updated on 22/Feb/18 $${integrate}\:{the}\:{d}.{e}.\:\:\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:−\mathrm{2}{x}\:{y}\:=\:{e}^{−{x}^{\mathrm{2}} } . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30418 by abdo imad last updated on 22/Feb/18 $${integrate}\:{y}^{'} \:−\mathrm{2}{xy}\:=\:{sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30416 by abdo imad last updated on 22/Feb/18 $${integrate}\:{the}\:{d}.{e}.\:\:\:{y}^{''} \:−\mathrm{4}{y}\:={x}\:+{e}^{\mathrm{2}{x}} . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30411 by abdo imad last updated on 22/Feb/18 $${solve}\:{the}\:{d}.{e}.\:{y}+{x}\:\left({y}^{'} \right)^{\mathrm{3}} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30408 by abdo imad last updated on 22/Feb/18 $${integrate}\:{the}\:{d}.{e}.\:{y}^{'} {sinx}\:−\mathrm{2}{y}\:{cosx}={e}^{−{x}} . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95924 by i jagooll last updated on 28/May/20 $$\mathrm{form}\:\mathrm{a}\:\mathrm{Lagrangian}\:\mathrm{to}\:\mathrm{maximize} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{constraint}\:\mathrm{2x}+\mathrm{y}\:=\:\mathrm{3}? \\ $$ Commented by john santu last updated…
Question Number 30377 by ajfour last updated on 21/Feb/18 Commented by ajfour last updated on 21/Feb/18 $${Given}\:{the}\:{ellipse}\:{touches}\:{parabola} \\ $$$${only}\:{at}\:{vertex}\:{and}\:{lies}\:{within}\:{the} \\ $$$${the}\:{red}\:{line}\:{and}\:{parabola}. \\ $$ Answered by…
Question Number 161406 by mnjuly1970 last updated on 17/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:{f}\:\left({x}\:\right)\:=\:{cos}^{\:\mathrm{2}} \left(\:{x}\:\right)\:+\:{sin}^{\:\mathrm{4}} \left(\:{x}\:\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:−−−{solution}−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:{cos}^{\:\mathrm{2}} \left({x}\:\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:.\left(\:\mathrm{1}−{cos}^{\:\mathrm{2}}…