Question Number 30411 by abdo imad last updated on 22/Feb/18 $${solve}\:{the}\:{d}.{e}.\:{y}+{x}\:\left({y}^{'} \right)^{\mathrm{3}} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30408 by abdo imad last updated on 22/Feb/18 $${integrate}\:{the}\:{d}.{e}.\:{y}^{'} {sinx}\:−\mathrm{2}{y}\:{cosx}={e}^{−{x}} . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95924 by i jagooll last updated on 28/May/20 $$\mathrm{form}\:\mathrm{a}\:\mathrm{Lagrangian}\:\mathrm{to}\:\mathrm{maximize} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{constraint}\:\mathrm{2x}+\mathrm{y}\:=\:\mathrm{3}? \\ $$ Commented by john santu last updated…
Question Number 30377 by ajfour last updated on 21/Feb/18 Commented by ajfour last updated on 21/Feb/18 $${Given}\:{the}\:{ellipse}\:{touches}\:{parabola} \\ $$$${only}\:{at}\:{vertex}\:{and}\:{lies}\:{within}\:{the} \\ $$$${the}\:{red}\:{line}\:{and}\:{parabola}. \\ $$ Answered by…
Question Number 161406 by mnjuly1970 last updated on 17/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:{f}\:\left({x}\:\right)\:=\:{cos}^{\:\mathrm{2}} \left(\:{x}\:\right)\:+\:{sin}^{\:\mathrm{4}} \left(\:{x}\:\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:−−−{solution}−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:{cos}^{\:\mathrm{2}} \left({x}\:\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:.\left(\:\mathrm{1}−{cos}^{\:\mathrm{2}}…
Question Number 161369 by mnjuly1970 last updated on 17/Dec/21 $$ \\ $$$$\:\:\:\:\:\mathrm{D}{etermine}\:{the}\:{value}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:{proposition}\:.\:\left(\:\:\mathrm{T}{rue}\:\:{or}\:\:\mathrm{F}{alse}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\exists\:{x}\:\in\:\mathbb{R}\:;\:\:\begin{vmatrix}{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{2}{x}}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}\:}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{1}\:+\mathrm{2}{x}}\end{vmatrix}=\:{x}^{\:\mathrm{3}} +\:\mathrm{8}{x}−\mathrm{2}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$$$\:\:\: \\ $$…
Question Number 161311 by CM last updated on 15/Dec/21 $${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$ Answered by mr W last updated on 15/Dec/21 $$\frac{{dy}}{{dx}}=\mathrm{cos}\:\left({xy}\right)\left({y}+{x}\frac{{dy}}{{dx}}\right) \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{y}\:\mathrm{cos}\:\left({xy}\right)}{\mathrm{1}−{x}\:\mathrm{cos}\:\left({xy}\right)} \\ $$…
Question Number 30244 by amit96 last updated on 19/Feb/18 $${if}\:{f}^{−\mathrm{1}} \:{exists}\:{and}\:{f}\:{is}\:{differentiable}\:{on}\:{R}\:,{the}\:{f}^{−\mathrm{1}} \:{is}\:{also}\:{differentiable}.\left({T}/{F}\right) \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95760 by M±th+et+s last updated on 27/May/20 $$\frac{{d}}{{d}\left({x}\right)}\left({W}\left({x}\right)\right)=? \\ $$$$\:{W}\left({x}\right)\:{is}\:{lambert}\:{W}\:{function} \\ $$ Answered by prakash jain last updated on 27/May/20 $$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}\:{W}_{\mathrm{0}} \left({x}\right)\:\mathrm{by}\:{W}\left({x}\right)? \\…
Question Number 30188 by abdo imad last updated on 17/Feb/18 $$\:{solve}\:{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right){y}^{'} \:−\mathrm{2}{xy}\:=\mathrm{0} \\ $$ Commented by mrW2 last updated on 17/Feb/18 $${x}^{\mathrm{3}} \left({x}^{\mathrm{2}}…