Question Number 30187 by abdo imad last updated on 17/Feb/18 $${solve}\:{xy}^{'} \:−\mathrm{2}{y}\:=\:{x}^{\mathrm{4}} \:. \\ $$ Answered by ajfour last updated on 18/Feb/18 $$\frac{{dy}}{{dx}}−\left(\frac{\mathrm{2}}{{x}}\right){y}={x}^{\mathrm{3}} \\ $$$${e}^{−\int\frac{\mathrm{2}}{{x}}{dx}}…
Question Number 30186 by abdo imad last updated on 17/Feb/18 $${solve}\:{x}^{\mathrm{2}} {y}^{''} \:−\mathrm{2}{y}\:={x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161209 by CM last updated on 14/Dec/21 $${Differentiate}\:{y}={e}^{−{x}^{\mathrm{2}} } \\ $$ Commented by cortano last updated on 14/Dec/21 $$\:\Leftrightarrow\mathrm{ln}\:{y}=−{x}^{\mathrm{2}} \\ $$$$\Leftrightarrow\frac{{y}'}{{y}}\:=\:−\mathrm{2}{x}\: \\ $$$$\Leftrightarrow\:{y}'\:=\:−\mathrm{2}{x}\:{e}^{−{x}^{\mathrm{2}}…
Question Number 30123 by tawa tawa last updated on 16/Feb/18 $$\mathrm{find}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{or}\:\mathrm{divergence}\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right) \\ $$ Commented by prof Abdo imad last updated on 16/Feb/18 $${let}\:{put}\:{S}_{{n}}…
Question Number 95644 by Ar Brandon last updated on 26/May/20 $$\mathrm{If}\:\mathrm{f}\:\mathrm{is}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} ,\:\mathrm{show}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{x}_{\mathrm{0}} } {\mathrm{lim}f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{0}} \right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95643 by Ar Brandon last updated on 26/May/20 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{all} \\ $$$$\mathrm{points}\:\mathrm{x}_{\mathrm{0}} \in\mathbb{R}\:\mathrm{and}\:\mathrm{that}\:\mathrm{f}'\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{3x}_{\mathrm{0}} ^{\mathrm{2}} \\ $$ Answered by Rio Michael last updated…
Question Number 95638 by Ar Brandon last updated on 26/May/20 $$\mathrm{a}\backslash\mathrm{Show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\:\mathrm{is}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{all}\:\mathrm{points}\:\mathrm{x}_{\mathrm{0}} >\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{f}'\left(\mathrm{x}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{0}} } \\ $$$$\mathrm{b}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\:\left(\mathrm{continuous}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0}\right) \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{derivable}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0} \\ $$ Answered…
Question Number 95636 by Ar Brandon last updated on 26/May/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangent}\left(\mathrm{T}_{\mathrm{0}} \right)\:\mathrm{to}\:\mathrm{y}=\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} −\mathrm{x} \\ $$$$\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{2}.\:\mathrm{Find}\:\mathrm{x}_{\mathrm{1}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{T}_{\mathrm{1}} \:\mathrm{at}\:\mathrm{x}_{\mathrm{1}} \\ $$$$\mathrm{be}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{T}_{\mathrm{0}} . \\ $$ Answered…
Question Number 95635 by Ar Brandon last updated on 26/May/20 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{a}\:\mathrm{function}\:\mathrm{is}\:\mathrm{even}\:\mathrm{and}\:\mathrm{derivable}\:\mathrm{then} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function}. \\ $$ Answered by mr W last updated on 26/May/20 $${f}\left({x}\right)\:{is}\:{even}:\:{f}\left(−{x}\right)={f}\left({x}\right) \\…
Question Number 161136 by mnjuly1970 last updated on 12/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\prec\:\mathrm{X}\:,\:\tau\:\succ\:{is}\:{a}\:{topological}\:{space} \\ $$$$\:\:\:\:\:\:{and}\:\:\:\mathrm{A}\:\subseteq\:\mathrm{X}\:, \\ $$$$\:\:\:\:\:\:\:\overset{−} {\mathrm{A}}\overset{?} {=}\underset{\mathrm{F}\supset\mathrm{A}} {\cap}\mathrm{F}\:\:\:\:\:\left(\:\mathrm{F}\:{is}\:{closed}\:{set}\:\right) \\ $$$$ \\ $$ Answered by…