Question Number 161130 by blackmamba last updated on 12/Dec/21 $$\:{Given}\:{P}\left({x}\right)\:{is}\:{polynomial}\:{such}\:{that} \\ $$$$\:{P}\left(\mathrm{3}{x}\right)=\:{P}\:'\left({x}\right).{P}\:''\left({x}\right)\:.\:{Find}\:{the}\:{tangent} \\ $$$$\:{of}\:{curve}\:{y}\:=\:{P}\left({x}\right)\:{parallel}\:{to}\:{the}\:{line} \\ $$$$\:{y}=\:\mathrm{4}{x}−\mathrm{2}.\: \\ $$ Answered by FongXD last updated on 12/Dec/21…
Question Number 95456 by ~blr237~ last updated on 25/May/20 $${solve}\:{on}\:\mathbb{R}\: \\ $$$$\:\:{y}'+{xy}={y}^{\mathrm{2}} +\mathrm{1}\:\:\:\:\:\:\:\:{y}\left(\mathrm{0}\right)={a}\:\in\mathbb{R} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 160968 by mnjuly1970 last updated on 10/Dec/21 Answered by cortano last updated on 10/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 160967 by mnjuly1970 last updated on 10/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95396 by ~blr237~ last updated on 25/May/20 $$\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}{e}^{\mathrm{2}} }\:\: \\ $$$$\: \\ $$ Commented by mathmax…
Question Number 160933 by blackmamba last updated on 09/Dec/21 $$\:{In}\:{the}\:{given}\:{equation}\:{below}\:,\:{applying} \\ $$$${the}\:{formula}\:{for}\:{the}\:{derivative}\:{of} \\ $$$$\:{inverse}\:{trigonometric}\:{functions}\:, \\ $$$$\:{what}\:{is}\:{the}\:''{u}\:''\:{from}\:{the}\:{given}\:{function}. \\ $$$$\:{y}\:=\:\mathrm{cosec}^{−\mathrm{1}} \left[\:\mathrm{sin}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right)\right] \\ $$ Answered by bobhans last…
Question Number 95397 by ~blr237~ last updated on 25/May/20 $${f}\left({x}\right)=\frac{\mathrm{1}}{{lnx}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}\: \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}=\:\gamma\: \\ $$ Commented by Mikael_786 last updated on…
Question Number 29851 by abdo imad last updated on 13/Feb/18 $${let}\:{give}\:{f}\left({z}\right)=\frac{{tanz}\:−{z}}{\left(\mathrm{1}−{cosz}\right)^{\mathrm{2}} }\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95325 by ~blr237~ last updated on 24/May/20 $$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{1}}{{n}}{HCF}\left(\mathrm{20},{n}\right)\:=\:\mathrm{0}\:\:\:\:\:\:\:? \\ $$ Commented by mr W last updated on 24/May/20 $$\mathrm{1}\leqslant{HCF}\left(\mathrm{20},{n}\right)\leqslant\mathrm{20}\:{for}\:{n}\geqslant\mathrm{20} \\ $$$$\frac{\mathrm{1}}{{n}}\leqslant\frac{{HCF}\left(\mathrm{20},{n}\right)}{{n}}\leqslant\frac{\mathrm{20}}{{n}} \\…
Question Number 95323 by ~blr237~ last updated on 24/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{ln}\left(\mathrm{2}+{t}\right)}{{t}}{dt}\:=\:\left({ln}\mathrm{2}\right)^{\mathrm{2}} \\ $$ Answered by abdomathmax last updated on 24/May/20 $$\left.\exists\:\mathrm{c}\in\right]\mathrm{x},\mathrm{2x}\left[\:/\:\int_{\mathrm{x}} ^{\mathrm{2x}} \:\frac{\mathrm{ln}\left(\mathrm{2}+\mathrm{t}\right)}{\mathrm{t}}\mathrm{dt}\:=\mathrm{ln}\left(\mathrm{2}+\mathrm{c}\right)\int_{\mathrm{x}}…