Question Number 160933 by blackmamba last updated on 09/Dec/21 $$\:{In}\:{the}\:{given}\:{equation}\:{below}\:,\:{applying} \\ $$$${the}\:{formula}\:{for}\:{the}\:{derivative}\:{of} \\ $$$$\:{inverse}\:{trigonometric}\:{functions}\:, \\ $$$$\:{what}\:{is}\:{the}\:''{u}\:''\:{from}\:{the}\:{given}\:{function}. \\ $$$$\:{y}\:=\:\mathrm{cosec}^{−\mathrm{1}} \left[\:\mathrm{sin}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right)\right] \\ $$ Answered by bobhans last…
Question Number 95397 by ~blr237~ last updated on 25/May/20 $${f}\left({x}\right)=\frac{\mathrm{1}}{{lnx}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}\: \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}=\:\gamma\: \\ $$ Commented by Mikael_786 last updated on…
Question Number 29851 by abdo imad last updated on 13/Feb/18 $${let}\:{give}\:{f}\left({z}\right)=\frac{{tanz}\:−{z}}{\left(\mathrm{1}−{cosz}\right)^{\mathrm{2}} }\:\:{find}\:{Res}\left({f},\mathrm{0}\right). \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95325 by ~blr237~ last updated on 24/May/20 $$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{1}}{{n}}{HCF}\left(\mathrm{20},{n}\right)\:=\:\mathrm{0}\:\:\:\:\:\:\:? \\ $$ Commented by mr W last updated on 24/May/20 $$\mathrm{1}\leqslant{HCF}\left(\mathrm{20},{n}\right)\leqslant\mathrm{20}\:{for}\:{n}\geqslant\mathrm{20} \\ $$$$\frac{\mathrm{1}}{{n}}\leqslant\frac{{HCF}\left(\mathrm{20},{n}\right)}{{n}}\leqslant\frac{\mathrm{20}}{{n}} \\…
Question Number 95323 by ~blr237~ last updated on 24/May/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{ln}\left(\mathrm{2}+{t}\right)}{{t}}{dt}\:=\:\left({ln}\mathrm{2}\right)^{\mathrm{2}} \\ $$ Answered by abdomathmax last updated on 24/May/20 $$\left.\exists\:\mathrm{c}\in\right]\mathrm{x},\mathrm{2x}\left[\:/\:\int_{\mathrm{x}} ^{\mathrm{2x}} \:\frac{\mathrm{ln}\left(\mathrm{2}+\mathrm{t}\right)}{\mathrm{t}}\mathrm{dt}\:=\mathrm{ln}\left(\mathrm{2}+\mathrm{c}\right)\int_{\mathrm{x}}…
Question Number 29778 by puneet1789 last updated on 12/Feb/18 Answered by Giannibo last updated on 12/Feb/18 $$ \\ $$$$ \\ $$$$\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}'\left(\mathrm{x}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{e}^{\mathrm{x}} \mathrm{f}\left(\mathrm{x}\right)+\mathrm{e}^{\mathrm{x}} \mathrm{f}'\left(\mathrm{x}\right)\leqslant\mathrm{e}^{\mathrm{x}}…
Question Number 160837 by mnjuly1970 last updated on 07/Dec/21 Commented by cortano last updated on 07/Dec/21 $$\Leftrightarrow\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{1}=\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\right) \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{x}^{\mathrm{3}}…
Question Number 29752 by Victor31926 last updated on 11/Feb/18 $$\mathrm{pls}\:\mathrm{elp}\:\mathrm{with}\:\mathrm{dis}… \\ $$$$ \\ $$$$\int\frac{\left(\mathrm{1}−\mathrm{x}\right)\boldsymbol{{dx}}}{\left(\mathrm{1}+\mathrm{x}\right)\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} }} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 160822 by sdfg last updated on 07/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 160752 by Eric002 last updated on 05/Dec/21 $${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−{y}={x}^{\mathrm{2}} {sin}\mathrm{3}{x} \\ $$ Answered by qaz last updated on 06/Dec/21 $$\mathrm{y}''−\mathrm{y}=\mathrm{x}^{\mathrm{2}}…