Menu Close

Category: Differentiation

Question-194088

Question Number 194088 by cortano12 last updated on 27/Jun/23 Answered by horsebrand11 last updated on 27/Jun/23 $$\:\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{2}+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\right)\left(\mathrm{1}−\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\right) \\ $$$$\:\mathrm{let}\:\mathrm{x}+\mathrm{x}^{\mathrm{2}} =\:\mathrm{u} \\ $$$$\:\mathrm{y}^{\mathrm{2}}…

Question-193847

Question Number 193847 by Mingma last updated on 21/Jun/23 Answered by witcher3 last updated on 21/Jun/23 $$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}=−\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}=\Sigma\mathrm{x}^{\mathrm{k}} \\ $$$$=\int_{\mathrm{0}}…

f-x-2-0-x-2t-f-t-2-dt-then-1-2-f-x-dx-

Question Number 193768 by cortano12 last updated on 19/Jun/23 $$\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{2}+\underset{\mathrm{0}} {\overset{\:\mathrm{x}} {\int}}\left(\mathrm{2t}+\mathrm{f}\left(\mathrm{t}\right)\right)^{\mathrm{2}} \mathrm{dt}\: \\ $$$$\:\:\mathrm{then}\:\underset{−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:= \\ $$ Answered by gatocomcirrose last updated on…

Question-193486

Question Number 193486 by Mingma last updated on 15/Jun/23 Answered by Subhi last updated on 15/Jun/23 $${x}^{{x}} .{ln}\left({x}\right)={ln}\left({y}\right) \\ $$$${ln}\left({x}^{{x}} .{ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right)\Rrightarrow\:{xln}\left({x}\right)+{ln}\left({ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right) \\ $$$${ln}\left({x}\right)+{x}.\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}.{ln}\left({x}\right)}=\frac{\mathrm{1}}{{y}.{ln}\left({y}\right)}.\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}={x}^{{x}}…

if-U-f-x-y-z-and-z-f-x-y-then-find-the-formula-d-2-u-dx-2-in-terms-of-derivetive-of-F-and-derivative-of-z-respectively-

Question Number 130976 by BHOOPENDRA last updated on 31/Jan/21 $${if}\:{U}={f}\left({x},{y},{z}\right){and}\:{z}={f}\left({x},{y}\right){then}\:{find}\: \\ $$$${the}\:{formula}\:\frac{{d}^{\mathrm{2}} {u}}{{dx}^{\mathrm{2}} }\:{in}\:{terms}\:{of}\:{derivetive} \\ $$$${of}\:{F}\:{and}\:{derivative}\:{of}\:{z}\:{respectively}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

nice-calculus-calculate-I-0-Si-x-x-3-2-dx-8pi-Si-x-0-x-sin-t-t-dt-

Question Number 130949 by mnjuly1970 last updated on 31/Jan/21 $$\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{calculate}:\: \\ $$$$\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{S}{i}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{dx}\overset{???} {=}\sqrt{\mathrm{8}\pi}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{S}{i}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{sin}\left({t}\right)}{{t}}{dt} \\ $$ Answered…