Question Number 194088 by cortano12 last updated on 27/Jun/23 Answered by horsebrand11 last updated on 27/Jun/23 $$\:\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{2}+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\right)\left(\mathrm{1}−\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\right) \\ $$$$\:\mathrm{let}\:\mathrm{x}+\mathrm{x}^{\mathrm{2}} =\:\mathrm{u} \\ $$$$\:\mathrm{y}^{\mathrm{2}}…
Question Number 193847 by Mingma last updated on 21/Jun/23 Answered by witcher3 last updated on 21/Jun/23 $$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}=−\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}=\Sigma\mathrm{x}^{\mathrm{k}} \\ $$$$=\int_{\mathrm{0}}…
Question Number 193768 by cortano12 last updated on 19/Jun/23 $$\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{2}+\underset{\mathrm{0}} {\overset{\:\mathrm{x}} {\int}}\left(\mathrm{2t}+\mathrm{f}\left(\mathrm{t}\right)\right)^{\mathrm{2}} \mathrm{dt}\: \\ $$$$\:\:\mathrm{then}\:\underset{−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:= \\ $$ Answered by gatocomcirrose last updated on…
Question Number 193761 by AZEEZAY last updated on 19/Jun/23 Answered by Frix last updated on 19/Jun/23 $$\mathrm{Simply}\:\mathrm{use}\:\mathrm{this}: \\ $$$${c}=\mathrm{log}_{{b}} \:{a}\:\Leftrightarrow\:{a}={b}^{{c}} \\ $$ Answered by SaRahAli…
Question Number 193486 by Mingma last updated on 15/Jun/23 Answered by Subhi last updated on 15/Jun/23 $${x}^{{x}} .{ln}\left({x}\right)={ln}\left({y}\right) \\ $$$${ln}\left({x}^{{x}} .{ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right)\Rrightarrow\:{xln}\left({x}\right)+{ln}\left({ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right) \\ $$$${ln}\left({x}\right)+{x}.\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}.{ln}\left({x}\right)}=\frac{\mathrm{1}}{{y}.{ln}\left({y}\right)}.\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}={x}^{{x}}…
Question Number 131028 by BHOOPENDRA last updated on 31/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130994 by mnjuly1970 last updated on 31/Jan/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:\:{integral}\:… \\ $$$$\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{e}^{−{x}} {sin}\left(\mathrm{2}{x}\right)}{{sinh}\left({x}\right)}\right){dx}=? \\ $$$$ \\ $$ Answered by mindispower last…
Question Number 130976 by BHOOPENDRA last updated on 31/Jan/21 $${if}\:{U}={f}\left({x},{y},{z}\right){and}\:{z}={f}\left({x},{y}\right){then}\:{find}\: \\ $$$${the}\:{formula}\:\frac{{d}^{\mathrm{2}} {u}}{{dx}^{\mathrm{2}} }\:{in}\:{terms}\:{of}\:{derivetive} \\ $$$${of}\:{F}\:{and}\:{derivative}\:{of}\:{z}\:{respectively}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130953 by LYKA last updated on 01/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130949 by mnjuly1970 last updated on 31/Jan/21 $$\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{calculate}:\: \\ $$$$\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{S}{i}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{dx}\overset{???} {=}\sqrt{\mathrm{8}\pi}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{S}{i}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{sin}\left({t}\right)}{{t}}{dt} \\ $$ Answered…