Menu Close

Category: Differentiation

Show-that-g-f-x-g-f-x-f-x-

Question Number 94861 by Ar Brandon last updated on 21/May/20 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{g}\circ\mathrm{f}\right)'\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{f}\left(\mathrm{x}\right)\right)\centerdot\mathrm{f}'\left(\mathrm{x}\right) \\ $$ Commented by john santu last updated on 21/May/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{u}\:\Rightarrow\mathrm{y}=\mathrm{g}\left(\mathrm{u}\right) \\…

A-study-indicates-that-x-months-from-now-the-population-of-a-certain-town-will-be-decreasing-at-the-rate-of-5-3x-2-3-people-per-month-By-how-much-will-the-population-of-the-town-increase-per-the-

Question Number 94579 by pete last updated on 20/May/20 $$\mathrm{A}\:\mathrm{study}\:\mathrm{indicates}\:\mathrm{that}\:{x}\:\mathrm{months}\:\mathrm{from}\:\mathrm{now} \\ $$$$\mathrm{the}\:\mathrm{population}\:\mathrm{of}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{town}\:\mathrm{will}\:\mathrm{be}\: \\ $$$$\mathrm{decreasing}\:\mathrm{at}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{5}+\mathrm{3}{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \:\mathrm{people} \\ $$$$\mathrm{per}\:\mathrm{month}.\:\mathrm{By}\:\mathrm{how}\:\mathrm{much}\:\mathrm{will}\:\mathrm{the}\:\mathrm{population} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{town}\:\mathrm{increase}\:\mathrm{per}\:\mathrm{the}\:\mathrm{next}\:\mathrm{8}\:\mathrm{months}. \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{need}}\:\boldsymbol{{help}}\:\boldsymbol{{with}}\:\boldsymbol{{the}}\:\boldsymbol{{above}}\:\boldsymbol{{question}},\:\boldsymbol{{please}}. \\ $$ Answered by…

let-give-the-sequence-y-n-y-0-x-1-and-y-n-x-1-0-x-y-n-1-t-2-dt-let-suppose-x-0-1-prove-that-y-n-is-increasing-majored-by-1-1-x-if-y-lim-n-y-n-prove-that-y-is-solu

Question Number 29037 by abdo imad last updated on 03/Feb/18 $${let}\:{give}\:{the}\:{sequence}\:\:\left({y}_{{n}} \right)\:/{y}_{\mathrm{0}} \left({x}\right)=\mathrm{1}\:\:{and} \\ $$$${y}_{{n}} \left({x}\right)=\:\mathrm{1}+\:\int_{\mathrm{0}} ^{{x}} \left({y}_{{n}−\mathrm{1}} \left({t}\right)\right)^{\mathrm{2}} {dt}\:,\:{let}\:{suppose}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{prove} \\ $$$${that}\:\left({y}_{{n}} \right)\:{is}\:{increasing}\:{majored}\:{by}\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:{if}\:{y}={lim}_{{n}\rightarrow+\infty} {y}_{{n}} \\…

find-all-function-f-C-1-R-2-R-wich-verify-f-x-f-y-0-x-y-R-2-

Question Number 29031 by abdo imad last updated on 03/Feb/18 $${find}\:{all}\:{function}\:{f}\:\in{C}^{\mathrm{1}} \left({R}^{\mathrm{2}} ,{R}\right)\:{wich}\:{verify} \\ $$$$\frac{\partial{f}}{\partial{x}}\:−\frac{\partial{f}}{\partial{y}}=\mathrm{0}\:\:\:\forall\left({x},{y}\right)\in{R}^{\mathrm{2}} . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

xy-x-4-y-4-x-4-y-4-and-0-for-origin-then-funtion-is-1-continuous-2-mixpartial-are-not-equal-at-origin-3-limit-at-origin-is-1-

Question Number 28949 by amit96 last updated on 02/Feb/18 $${xy}\frac{{x}^{\mathrm{4}} −{y}^{\mathrm{4}} }{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\:\:{and}\:\mathrm{0}\:{for}\:{origin} \\ $$$${then}\:{funtion}\:{is} \\ $$$$\mathrm{1}.{continuous} \\ $$$$\mathrm{2}.{mixpartial}\:{are}\:{not}\:{equal}\:{at}\:{origin} \\ $$$$\mathrm{3}.{limit}\:{at}\:{origin}\:{is}\:\mathrm{1} \\ $$ Terms…