Menu Close

Category: Geometry

Question-208913

Question Number 208913 by efronzo1 last updated on 27/Jun/24 Answered by A5T last updated on 27/Jun/24 $$\frac{{sin}\beta}{\mathrm{6}}=\frac{\mathrm{1}}{{AC}};\frac{{sin}\left(\mathrm{60}−\beta\right)}{\mathrm{3}}=\frac{\mathrm{1}}{{AC}} \\ $$$$\Rightarrow\frac{{sin}\left(\mathrm{60}−\beta\right)}{{sin}\beta}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\beta\approx\mathrm{40}.\mathrm{8934} \\ $$$$\Rightarrow{sin}\beta\approx\mathrm{0}.\mathrm{654654};\:{we}\:{can}\:{then}\:{find}\:{AC}=\frac{\mathrm{6}}{{sin}\beta} \\ $$$${AC}\approx\mathrm{9}.\mathrm{165151} \\ $$…

Question-208896

Question Number 208896 by efronzo1 last updated on 26/Jun/24 Answered by MM42 last updated on 27/Jun/24 $${s}_{\mathrm{1}} =\mathrm{32}−\int_{\mathrm{0}} ^{\mathrm{4}} \sqrt{\mathrm{64}−{x}^{\mathrm{2}} }{dx}\:\:\:\:\:;\:\:{x}=\mathrm{8}{sin}\theta \\ $$$$\Rightarrow=\mathrm{32}−\mathrm{64}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:{cos}^{\mathrm{2}}…

Question-208828

Question Number 208828 by efronzo1 last updated on 24/Jun/24 Answered by mr W last updated on 24/Jun/24 $${BM}={MC}={a},\:{say} \\ $$$${AM}={DM}=\mathrm{2}{a} \\ $$$$\frac{{BM}}{\mathrm{6}}=\frac{{MQ}}{\mathrm{4}}\:\Rightarrow{MQ}=\frac{\mathrm{2}{a}}{\mathrm{3}}\:\Rightarrow{QD}=\frac{\mathrm{4}{a}}{\mathrm{3}} \\ $$$$\left(\mathrm{6}+\mathrm{4}\right)^{\mathrm{2}} ={a}^{\mathrm{2}}…

Question-208690

Question Number 208690 by Tawa11 last updated on 21/Jun/24 Answered by mr W last updated on 21/Jun/24 $$\left(\mathrm{2}{r}−\mathrm{3}\right)×\mathrm{3}=\mathrm{2}^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$${shaded}\:{area}=\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{13}}{\mathrm{6}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{13}}{\mathrm{6}}\right)×\mathrm{2}\approx\mathrm{3}.\mathrm{04} \\ $$…