Menu Close

Category: Geometry

Let-denote-the-circumcircle-of-ABC-The-tangent-to-at-A-meets-BC-at-X-Let-the-angle-bisectors-of-AXB-meet-AC-and-AB-at-E-and-F-respectively-D-is-the-foot-of-the-angle-bisector-from-BAC-on-BC-

Question Number 112199 by Aina Samuel Temidayo last updated on 06/Sep/20 LetΩdenotethecircumcircleofABC.ThetangenttoΩatAmeetsBCatX.LettheanglebisectorsofAXBmeetACandABatEandFrespectively.DisthefootoftheanglebisectorfromBAConBC.LetAD$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \

In-a-trapezium-ABCD-with-AB-parallel-to-CD-If-M-is-the-midpoint-of-line-segment-AD-and-P-is-a-point-on-line-BC-such-that-MP-is-perpendicular-to-BC-Show-that-we-need-only-the-lengths-of-line-segme

Question Number 112060 by Aina Samuel Temidayo last updated on 06/Sep/20 Inatrapezium,ABCD,withABparalleltoCD.IfMisthemidpointoflinesegmentADandPisapointonlineBCsuchthatMPisperpendiculartoBC.Showthat,weneedonlythelengthsoflinesegmentsMPandBC$$\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{ABCD}. \

Using-the-cosine-rule-c-2-a-2-b-2-2abcosC-prove-the-triangle-inequality-if-a-b-and-c-are-sides-of-a-triangle-ABC-then-a-b-c-and-explain-when-equality-holds-Further-prove-that-sin-sin-s

Question Number 112059 by Aina Samuel Temidayo last updated on 05/Sep/20 Usingthecosinerule(c2=a2+b22abcosC),provethetriangleinequality:ifa,bandcaresidesofatriangleABC,thena+bcandexplainwhenequalityholds.$$\mathrm{Further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{sin}\:\alpha\:+\:\mathrm{sin}\:\beta\:\geqslant…