Question Number 166670 by amin96 last updated on 24/Feb/22 Commented by Laters last updated on 24/Feb/22 I think the awnser is 6 Commented by amin96 last updated on 24/Feb/22 $${solution}?…
Question Number 166640 by cherokeesay last updated on 23/Feb/22 Answered by som(math1967) last updated on 24/Feb/22 $${Area}\:{with}\:{circle} \\ $$$$=\mathrm{2}×\left\{\frac{\pi}{\mathrm{6}}×\mathrm{4}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\mathrm{4}^{\mathrm{2}} \right\}{cm}^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{16}\pi}{\mathrm{3}}\:−\mathrm{4}\sqrt{\mathrm{3}}\right){cm}^{\mathrm{2}} \: \\…
Question Number 166628 by Nimatullah last updated on 23/Feb/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 166617 by mr W last updated on 23/Feb/22 Commented by mr W last updated on 23/Feb/22 $${three}\:{circles}\:{with}\:{radii}\:{a},\:{b},\:{c}\: \\ $$$${touch}\:{each}\:{other}\:{as}\:{shown}.\: \\ $$$${find}\:{the}\:{maximum}\:{side}\:{length}\:{of}\: \\ $$$${the}\:{equilateral}\:{triangle}\:{whose}\:…
Question Number 35527 by jivrajmunde4849@gmail.com last updated on 20/May/18 Commented by Rasheed.Sindhi last updated on 22/May/18 $$\mathrm{Ellipse}\:\mathrm{may}\:\mathrm{be}\:\mathrm{drawn}\:\mathrm{of}\:\mathrm{different}\: \\ $$$$\mathrm{sizes}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{data}.\:\mathrm{So}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{shaded}\:\mathrm{region}\:\mathrm{is}\:\mathrm{not}\:\mathrm{fix}. \\ $$ Terms of…
Question Number 166531 by ajfour last updated on 21/Feb/22 Commented by ajfour last updated on 21/Feb/22 $${Find}\:{s}_{{min}} \:\left({side}\:{of}\:{eql}\:\bigtriangleup\right)\:{in}\:{terms} \\ $$$${of}\:{a}\:{and}\:{b}. \\ $$ Commented by BahramAlaei…
Question Number 166520 by ajfour last updated on 21/Feb/22 Commented by ajfour last updated on 21/Feb/22 $${If}\:{the}\:{circles}\:{have}\:{radii}\:{a},{b},{c} \\ $$$$\:{find}\:{maximum}\:{side}\:{length}\:{of} \\ $$$${such}\:{an}\:{equilateral}\:{triangle}. \\ $$ Commented by…
Question Number 166465 by ajfour last updated on 20/Feb/22 Commented by ajfour last updated on 20/Feb/22 $${Find}\:\frac{{a}}{{b}}\:\:{in}\:{terms}\:{of}\:\alpha\:{and}\:\beta. \\ $$ Answered by mr W last updated…
Question Number 35390 by ajfour last updated on 18/May/18 Commented by ajfour last updated on 18/May/18 $${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC}. \\ $$$${The}\:{ellipse}\:{equation}\:{is}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:. \\ $$…
Question Number 166440 by cortano1 last updated on 20/Feb/22 Commented by mr W last updated on 20/Feb/22 $${i}\:{don}'{t}\:{think}\:{we}\:{can}\:{determine}\:{x} \\ $$$${only}\:{with}\:{the}\:{given}\:{conditions}. \\ $$ Terms of Service…