Question Number 159999 by Tawa11 last updated on 23/Nov/21 Answered by Kunal12588 last updated on 23/Nov/21 $$\left(\mathrm{1}−{x}^{{n}} \right)=\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +…+{x}^{{n}−\mathrm{1}} \right) \\ $$$$\int\frac{\mathrm{1}−{x}^{\mathrm{100}} }{\mathrm{1}−{x}}{dx}=\int\left(\mathrm{1}+{x}+{x}^{\mathrm{2}}…
Question Number 94448 by mr W last updated on 18/May/20 Commented by behi83417@gmail.com last updated on 18/May/20 Commented by behi83417@gmail.com last updated on 19/May/20 $$\mathrm{A}\overset{\blacktriangle}…
Question Number 28852 by tawa tawa last updated on 31/Jan/18 $$\mathrm{Testing}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Bakelite}\:\mathrm{sample}\:\mathrm{by}\:\mathrm{schering}\:\mathrm{Bridge}\:\mathrm{having}\:\mathrm{a}\:\mathrm{standard}\:\mathrm{capacitor} \\ $$$$\mathrm{of}\:\:\mathrm{106pF}\:,\:\:\mathrm{balance}\:\mathrm{was}\:\mathrm{obtained}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{351}\:\mathrm{F}\:\:\mathrm{in}\:\mathrm{parallel} \\ $$$$\mathrm{with}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{in}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{arm}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bridge}\:\mathrm{being}\:\:\:\mathrm{130}\:\Omega. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{capacitance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{equivalent}\:\mathrm{series}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{specimen} \\ $$$$\mathrm{and}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$ Terms of Service Privacy…
Question Number 159911 by amin96 last updated on 22/Nov/21 Answered by mr W last updated on 22/Nov/21 Commented by mr W last updated on 22/Nov/21…
Question Number 159864 by cherokeesay last updated on 21/Nov/21 Answered by som(math1967) last updated on 22/Nov/21 $$\frac{{MP}}{{AM}}={sin}\mathrm{30}\Rightarrow{AM}=\mathrm{2}{R} \\ $$$${BL}={KN}=\sqrt{{MN}^{\mathrm{2}} −{MK}^{\mathrm{2}} } \\ $$$$=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} }=\sqrt{\mathrm{4}{rR}}=\mathrm{2}\sqrt{{R}}…
Question Number 159828 by amin96 last updated on 21/Nov/21 Commented by Rasheed.Sindhi last updated on 21/Nov/21 Commented by Rasheed.Sindhi last updated on 21/Nov/21 $$\mathcal{T}{he}\:{both}\:{angles}\:{labled}\:{by}\:'{x}'\:{are} \\…
Question Number 159829 by amin96 last updated on 21/Nov/21 $$\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{1}\:\: \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}} \\ $$ Commented by mr W last updated on 21/Nov/21 $${do}\:{you}\:{mean}\:{the}\:{perimeter}\:{of}\:{the}…
Question Number 94291 by I want to learn more last updated on 17/May/20 Commented by PRITHWISH SEN 2 last updated on 18/May/20 $$\mathrm{diagonal}=\sqrt{\left(\mathrm{14}+\mathrm{9}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} }\:\:=\mathrm{17}\sqrt{\mathrm{2}}…
Question Number 159784 by amin96 last updated on 21/Nov/21 Commented by mr W last updated on 21/Nov/21 $${question}\:{is}\:{wrong}.\:{there}\:{is}\:{no}\:{unique} \\ $$$${solution}. \\ $$ Terms of Service…
Question Number 159763 by amin96 last updated on 21/Nov/21 Commented by amin96 last updated on 21/Nov/21 $${Why}? \\ $$ Commented by Tony6400 last updated on…