Menu Close

Category: Geometry

If-A-and-B-are-two-points-on-a-circle-of-radius-r-then-prove-that-mAB-2r-

Question Number 25344 by Rasheed.Sindhi last updated on 08/Dec/17 $$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{points}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{r},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{m}\overline {\mathrm{AB}}\leqslant\mathrm{2r}. \\ $$ Answered by jota+ last updated on 08/Dec/17 $${let}\:\:\measuredangle{AOB}=\mathrm{2}\theta…

What-is-the-real-and-the-imaginary-part-of-the-complex-number-z-1-1000003-

Question Number 25139 by tawa tawa last updated on 05/Dec/17 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{real}\:\mathrm{and}\:\mathrm{the}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number}\:\:\:\mathrm{z}\:=\:\left(−\:\mathrm{1}\right)^{\mathrm{1000003}} \\ $$ Answered by Rasheed.Sindhi last updated on 05/Dec/17 $$\left(−\mathrm{i}\right)^{\mathrm{1000003}} =\left\{\left(−\mathrm{i}\right)^{\mathrm{2}} \right\}^{\mathrm{500001}} \left(−\mathrm{i}\right) \\…

Question-156133

Question Number 156133 by mr W last updated on 08/Oct/21 Commented by mr W last updated on 08/Oct/21 $${the}\:{lengthes}\:{of}\:{three}\:{edges}\:{of}\:{the}\: \\ $$$${pyramid}\:{are}\:{a},{b},{c}.\:{the}\:{angle}\:{between} \\ $$$${each}\:{pair}\:{of}\:{them}\:{is}\:\theta. \\ $$$${find}\:{the}\:{minimum}\:{distance}\:{PQ}…

Question-90514

Question Number 90514 by I want to learn more last updated on 24/Apr/20 Commented by $@ty@m123 last updated on 24/Apr/20 $$\mathrm{tan}\:\mathrm{20}^{\mathrm{o}} =\frac{{BC}}{\mathrm{4}+{x}} \\ $$$${BC}=\mathrm{0}.\mathrm{364}\left(\mathrm{4}+{x}\right)….\left(\mathrm{1}\right) \\…

ABCD-is-a-square-with-side-length-1-E-is-a-moving-point-between-B-amp-C-F-is-a-moving-point-between-C-amp-D-Find-the-maximum-radius-of-inscribed-circle-in-AEF-

Question Number 90456 by Tony Lin last updated on 23/Apr/20 $${ABCD}\:{is}\:{a}\:{square}\:{with}\:{side}\:{length}=\mathrm{1} \\ $$$${E}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{B\&C} \\ $$$${F}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{C\&D} \\ $$$${Find}\:{the}\:{maximum}\:{radius}\:{of}\:{inscribed} \\ $$$${circle}\:{in}\:\bigtriangleup{AEF} \\ $$ Answered by mr W…