Question Number 23262 by ajfour last updated on 28/Oct/17 Commented by ajfour last updated on 28/Oct/17 $$\frac{{CN}}{{AC}}=\frac{{x}}{{x}+{y}}\:\:\:;\:\:\:\frac{{AN}}{{AC}}=\frac{{y}}{{x}+{y}} \\ $$$$\frac{{MB}}{{AB}}\:=\frac{{y}}{{x}+{y}}\:;\:\:\frac{{AM}}{{AB}}=\frac{{x}}{{x}+{y}}\:. \\ $$$${based}\:{on}\:{similarity}\:\:{of}\:{triangles}. \\ $$$$\bigtriangleup{CNP}\:\sim\:\bigtriangleup{CAB} \\ $$$$\Rightarrow\:\:\frac{{CN}}{{AC}}=\frac{{NP}\left(={AM}\right)}{{AB}}=\frac{{CP}}{{BC}}…
Question Number 23253 by ajfour last updated on 28/Oct/17 Commented by ajfour last updated on 28/Oct/17 $${Q}.\mathrm{23251}\:\left({solution}\right) \\ $$ Commented by math solver last updated…
Question Number 23251 by math solver last updated on 28/Oct/17 Commented by math solver last updated on 28/Oct/17 $$\mathrm{q}.\mathrm{19}\:? \\ $$ Terms of Service Privacy…
Question Number 154306 by amin96 last updated on 16/Sep/21 Commented by som(math1967) last updated on 17/Sep/21 $${see}\:{Qno}\:\mathrm{152486} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 23226 by ajfour last updated on 27/Oct/17 Commented by ajfour last updated on 27/Oct/17 $${Q}.\mathrm{23212}\:\:\left({solution}\right) \\ $$ Commented by math solver last updated…
Question Number 88758 by mr W last updated on 12/Apr/20 $${Some}\:{people}\:{may}\:{have}\:{noticed}\:{that}\:{i} \\ $$$${usually}\:{calculate}\:{areas}\:{concerning} \\ $$$${parabola}\:{directly},\:{without}\:{applying} \\ $$$${complicated}\:{integral}\:{calculus}. \\ $$$${Here}\:{i}\:{am}\:{giving}\:{you}\:{the}\:{backgroud}.\: \\ $$$${Actually}\:{you}\:{know}\:{all}\:{these}\:{things}\:{and} \\ $$$${you}\:{are}\:{able}\:{to}\:{prove}\:{them}.\:{Maybe} \\ $$$${you}\:{just}\:{forget}\:{to}\:{apply}\:{them}.…
Question Number 88754 by ajfour last updated on 12/Apr/20 Commented by mr W last updated on 13/Apr/20 $${there}\:{is}\:{no}\:{unique}\:{solution}\:{for}\:\frac{{b}}{{a}}. \\ $$$${we}\:{can}\:{only}\:{find}\:{the}\:{correlation}\:{between} \\ $$$${a}\:{and}\:{b}. \\ $$ Commented…
Question Number 23212 by math solver last updated on 27/Oct/17 Commented by math solver last updated on 27/Oct/17 $$\mathrm{q}.\mathrm{13}\:\mathrm{plz}\:? \\ $$ Answered by ajfour last…
Question Number 88731 by I want to learn more last updated on 12/Apr/20 Commented by john santu last updated on 12/Apr/20 $$\left.\mathrm{2}\left.{a}\right)\:\frac{{dy}}{{dx}}\:=\:{kx}−\mathrm{48}{x}^{−\mathrm{3}} \:\right]_{\left(−\mathrm{2},\mathrm{14}\right)} \:=\:\mathrm{0} \\…
Question Number 23179 by Joel577 last updated on 27/Oct/17 Commented by Joel577 last updated on 27/Oct/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{shaded}\:\mathrm{part} \\ $$ Answered by ajfour last updated on…