Menu Close

Category: Geometry

Let-ABC-be-an-acute-angled-triangle-with-AC-BC-and-let-O-be-the-circumcenter-and-F-be-the-foot-of-altitude-through-C-Further-let-X-and-Y-be-the-feet-of-perpendiculars-dropped-from-A-and-B-respecti

Question Number 19104 by Tinkutara last updated on 04/Aug/17 $$\mathrm{Let}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:\mathrm{AC}\:\neq\:\mathrm{BC}\:\mathrm{and}\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{circumcenter}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:\mathrm{C}.\:\mathrm{Further},\:\mathrm{let}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{perpendiculars}\:\mathrm{dropped} \\ $$$$\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{to}\:\left(\mathrm{the}\right. \\ $$$$\left.\mathrm{extension}\:\mathrm{of}\right)\:\mathrm{CO}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{FO}\:\mathrm{intersects} \\ $$$$\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\Delta\mathrm{FXY},\:\mathrm{second}\:\mathrm{time} \\…

Question-150150

Question Number 150150 by Tawa11 last updated on 09/Aug/21 Commented by MJS_new last updated on 10/Aug/21 $$\mathrm{6}×\mathrm{6}−\left[\mathrm{4}{quarter}\:{circles}\:{r}=\mathrm{2}\right]−\left[\mathrm{3}{circles}\:{r}=\mathrm{1}\right]= \\ $$$$=\mathrm{36}−\mathrm{7}\pi \\ $$ Commented by Tawa11 last…

Find-the-side-lengths-of-a-triangle-if-side-lengths-are-consecutive-integers-and-one-of-whose-angles-is-twice-as-large-as-another-

Question Number 18968 by chux last updated on 02/Aug/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{side}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{if}\:\mathrm{side}\:\mathrm{lengths}\:\mathrm{are}\:\mathrm{consecutive}\: \\ $$$$\mathrm{integers},\mathrm{and}\:\mathrm{one}\:\mathrm{of}\:\mathrm{whose}\:\mathrm{angles} \\ $$$$\mathrm{is}\:\mathrm{twice}\:\mathrm{as}\:\mathrm{large}\:\mathrm{as}\:\mathrm{another}. \\ $$ Commented by chux last updated on 02/Aug/17…

Let-PQRS-be-a-rectangle-such-that-PQ-a-and-QR-b-Suppose-r-1-is-the-radius-of-the-circle-passing-through-P-and-Q-and-touching-RS-and-r-2-is-the-radius-of-the-circle-passing-through-Q-and-R-and-t

Question Number 18967 by Tinkutara last updated on 02/Aug/17 $$\mathrm{Let}\:\mathrm{PQRS}\:\mathrm{be}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PQ}\:=\:{a}\:\mathrm{and}\:\mathrm{QR}\:=\:{b}.\:\mathrm{Suppose}\:\mathrm{r}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{P} \\ $$$$\mathrm{and}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{RS}\:\mathrm{and}\:\mathrm{r}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{Q} \\ $$$$\mathrm{and}\:\mathrm{R}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{PS}.\:\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\mathrm{5}\left({a}\:+\:{b}\right)\:\leqslant\:\mathrm{8}\left(\mathrm{r}_{\mathrm{1}} \:+\:\mathrm{r}_{\mathrm{2}}…

Question-150033

Question Number 150033 by cherokeesay last updated on 08/Aug/21 Answered by maged last updated on 09/Aug/21 $${A}_{{c}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{36}\pi}{\mathrm{2}}=\mathrm{18}\pi \\ $$$$\mid{BH}\mid={R}\mathrm{sin}\:\mathrm{60}°=\mathrm{6}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{3}\sqrt{\mathrm{3}} \\ $$$${A}_{{y}} ={A}_{{s}} +{A}_{{t}}…

Question-84381

Question Number 84381 by behi83417@gmail.com last updated on 12/Mar/20 Commented by behi83417@gmail.com last updated on 12/Mar/20 $$\mathrm{AB}=\mathrm{9},\mathrm{BC}=\mathrm{10},\mathrm{CA}=\mathrm{12} \\ $$$$\mathrm{FI},\mathrm{divides}\:\mathrm{triangle}\:\mathrm{in}\:\mathrm{two}\:\mathrm{parts}\:\mathrm{that}\:\mathrm{equail}\:\mathrm{in}\: \\ $$$$\mathrm{area}\:\mathrm{and}\:\mathrm{perimeter}. \\ $$$$\mathrm{find}:\mathrm{CI},\mathrm{CF},\mathrm{FI}. \\ $$…