Menu Close

Category: Geometry

Question-205861

Question Number 205861 by mr W last updated on 01/Apr/24 Answered by A5T last updated on 01/Apr/24 $$\mathrm{9}×\mathrm{9}=\left(\mathrm{2}{r}−{x}\right){x}\Rightarrow\mathrm{2}{r}−{x}=\frac{\mathrm{81}}{{x}} \\ $$$$\mathrm{21}×\mathrm{21}=\left(\mathrm{2}{r}−\mathrm{16}−{x}\right)\left(\mathrm{16}+{x}\right)=\left(\frac{\mathrm{81}}{{x}}−\mathrm{16}\right)\left(\mathrm{16}+{x}\right) \\ $$$$\Rightarrow{x}=\mathrm{2}\Rightarrow{r}=\mathrm{21}.\mathrm{25} \\ $$ Commented…

Question-205660

Question Number 205660 by marie last updated on 26/Mar/24 Answered by Skabetix last updated on 26/Mar/24 $$\mathrm{E}{xercice}\:{n}°\mathrm{4} \\ $$$$\left.\mathrm{1}\right)\:{D}'{apres}\:{le}\:{theoreme}\:{de}\:{Pythagore}\:: \\ $$$${BC}^{\mathrm{2}} ={AC}^{\mathrm{2}} +{AB}^{\mathrm{2}} \\ $$$$\Leftrightarrow{BC}^{\mathrm{2}}…

Question-205639

Question Number 205639 by mr W last updated on 26/Mar/24 Answered by mahdipoor last updated on 26/Mar/24 $${Trapezium}−\mathrm{2}\:{Right}\:{triangle}={area}\:\Rightarrow \\ $$$$\left[\frac{\left({r}\right)+\left(\mathrm{4}+{r}\right)}{\mathrm{2}}×\mathrm{4}\right]−\left[\frac{\left(\mathrm{4}+{r}\right)\left({r}\right)}{\mathrm{2}}+\frac{\left(\mathrm{4}−{r}\right)\left({r}\right)}{\mathrm{2}}\right]=\mathrm{8} \\ $$ Commented by mr…

Question-205530

Question Number 205530 by cherokeesay last updated on 23/Mar/24 Answered by mr W last updated on 24/Mar/24 $${P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\varphi=−\frac{{dy}}{{dx}}=\frac{{b}}{{a}\:\mathrm{tan}\:\theta} \\ $$$${r}={a}\:\mathrm{cos}\:\theta−{r}\:\mathrm{sin}\:\varphi\:\Rightarrow{r}\:\mathrm{sin}\:\varphi={a}\:\mathrm{cos}\:\theta−{r} \\ $$$${r}={b}\:\mathrm{sin}\:\theta−{r}\:\mathrm{cos}\:\varphi\:\Rightarrow{r}\:\mathrm{cos}\:\varphi={b}\:\mathrm{sin}\:\theta−{r} \\…