Menu Close

Category: Geometry

Let-M-be-a-point-in-interior-of-ABC-Three-lines-are-drawn-through-M-parallel-to-triangle-s-sides-thereby-producing-three-trapezoids-Suppose-a-diagonal-is-drawn-in-each-trapezoid-in-such-a-way-tha

Question Number 16951 by Tinkutara last updated on 28/Jun/17 LetMbeapointininteriorofΔABC.ThreelinesaredrawnthroughM,paralleltotrianglessides,therebyproducingthreetrapezoids.Supposeadiagonalisdrawnineachtrapezoidinsuchawaythatthediagonalshavenocommonendpoints.Thesethree$$\mathrm{diagonals}\:\mathrm{divide}\:{ABC}\:\mathrm{into}\:\mathrm{seven} \

Through-the-vertices-of-the-smaller-base-AB-of-the-trapezoid-ABCD-two-parallel-lines-are-drawn-intersecting-the-segment-CD-These-lines-and-the-trapezoid-s-diagonals-divide-it-into-seven-triangles-an

Question Number 16947 by Tinkutara last updated on 28/Jun/17 ThroughtheverticesofthesmallerbaseABofthetrapezoidABCDtwoparallellinesaredrawn,intersectingthesegmentCD.Theselinesandthetrapezoidsdiagonalsdivideitintoseventrianglesandapentagon.Showthattheareaofthepentagonequals$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{three} \

From-a-point-on-the-circumcircle-of-an-equilateral-triangle-ABC-parallels-to-the-sides-BC-CA-and-AB-are-drawn-intersecting-the-sides-CA-AB-and-BC-at-the-points-M-N-P-respectively-Prove-that-the

Question Number 16877 by Tinkutara last updated on 27/Jun/17 FromapointonthecircumcircleofanequilateraltriangleABCparallelstothesidesBC,CAandABaredrawn,intersectingthesidesCA,ABandBCatthepointsM,N,P,respectively.ProvethatthepointsM,NandParecollinear. Terms…