Menu Close

Category: Geometry

Question-80587

Question Number 80587 by ajfour last updated on 04/Feb/20 Commented by ajfour last updated on 04/Feb/20 $${Given}:\:\bigtriangleup{ABC}\:{is}\:{equilateral}, \\ $$$${radius}\:{of}\:{small}\:{circle}\:{is}\:\mathrm{1}. \\ $$$${Find}\:{radius}\:{of}\:{outer}\:{circle},\:{a}. \\ $$ Commented by…

Calculate-the-heat-neccessary-to-raise-the-temperature-of-5-00-mol-of-butane-from-290K-to-593K-at-a-constant-pressure-where-Cp-19-41-0-233T-J-mol-K-

Question Number 15017 by tawa tawa last updated on 06/Jun/17 $$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{heat}\:\mathrm{neccessary}\:\mathrm{to}\:\mathrm{raise}\:\mathrm{the}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{5}.\mathrm{00}\:\mathrm{mol}\:\mathrm{of}\:\mathrm{butane} \\ $$$$\mathrm{from}\:\mathrm{290K}\:\mathrm{to}\:\mathrm{593K}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{pressure}.\:\mathrm{where}\:\mathrm{Cp}\left(\mathrm{19}.\mathrm{41}\:+\:\mathrm{0}.\mathrm{233T}\right)\mathrm{J}/\mathrm{mol}/\mathrm{K} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-14965

Question Number 14965 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17 Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17 $${in}\:{triangle}\:{ABD}: \\ $$$${CF},{IH},{GJ},{are}\:{the}\:{perpendicular}\: \\ $$$${bisector}\:{of}\:{sides}. \\ $$$${AD}=\mathrm{12},{AB}=\mathrm{14},{BD}=\mathrm{16} \\ $$$$……………\sqrt{…….}….===\sqrt{……..}…=…..…

For-those-who-are-interested-in-Geometry-A-triangle-has-an-area-of-1-unit-Each-of-its-sides-is-divided-into-4-equal-parts-through-3-points-The-first-and-the-last-point-of-each-side-will-be-connec

Question Number 14940 by mrW1 last updated on 05/Jun/17 $${For}\:{those}\:{who}\:{are}\:{interested}\:{in}\: \\ $$$${Geometry}:\: \\ $$$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{1}\:{unit}.\:{Each} \\ $$$${of}\:{its}\:{sides}\:{is}\:{divided}\:{into}\:\mathrm{4}\:{equal}\:{parts} \\ $$$${through}\:\mathrm{3}\:{points}.\:{The}\:{first}\:{and}\:{the}\:{last} \\ $$$${point}\:{of}\:{each}\:{side}\:{will}\:{be}\:{connected} \\ $$$${with}\:{each}\:{other}\:{to}\:{form}\:\mathrm{2}\:{inscribed} \\ $$$${triangles}\:{and}\:{these}\:\mathrm{2}\:{triangles}\:{form} \\…

Question-80477

Question Number 80477 by Power last updated on 03/Feb/20 Commented by Power last updated on 03/Feb/20 $$\left.\mathrm{A}\left.\right)\frac{\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{52}}{\mathrm{32}}\:\pi\mathrm{d}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}\right)\frac{\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{52}}{\mathrm{16}}\:\pi\mathrm{d}^{\mathrm{3}} \\ $$$$\left.\mathrm{C}\left.\right)\frac{\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{30}}{\mathrm{16}}\:\pi\mathrm{d}^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}\right)\frac{\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{12}}{\mathrm{64}}\:\pi\mathrm{d}^{\mathrm{3}} \\ $$ Commented by…