Menu Close

Category: Geometry

There-are-two-circles-C-of-radius-1-and-C-r-of-radius-r-which-intersect-on-a-plain-At-each-of-the-two-intersecting-points-on-the-circumferences-of-C-and-C-r-the-tangent-to-C-and-that-to-C-r-fo

Question Number 145370 by imjagoll last updated on 04/Jul/21 $$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{circles}\:,\:\mathrm{C}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \: \\ $$$$\mathrm{of}\:\mathrm{radius}\:\mathrm{r}\:\mathrm{which}\:\mathrm{intersect}\:\mathrm{on}\:\mathrm{a}\:\mathrm{plain}\: \\ $$$$\mathrm{At}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{intersecting} \\ $$$$\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumferences}\:\mathrm{of} \\ $$$$\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \:,\mathrm{the}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C}\:\mathrm{and} \\ $$$$\mathrm{that}\:\mathrm{to}\:\mathrm{C}_{\mathrm{r}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{120}°\:\mathrm{outside} \\ $$$$\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}}…

Question-79794

Question Number 79794 by mr W last updated on 28/Jan/20 Commented by mr W last updated on 28/Jan/20 $${Find}\:{the}\:{radii}\:{of}\:{two}\:{circles}\:\left({if}\:{exist}\right) \\ $$$${which}\:{touch}\:{each}\:{other}\:{and}\:{touch}\:{the} \\ $$$${parabola}\:{and}\:{the}\:{y}−{axis}\:{respectively}. \\ $$…

prove-that-a-triangle-inscribed-in-a-circle-of-radius-r-having-maximum-area-is-an-equilateral-triangle-with-side-3-r-

Question Number 145246 by gsk2684 last updated on 03/Jul/21 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{inscribed}\: \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{r}\:\mathrm{having}\:\mathrm{maximum} \\ $$$$\mathrm{area}\:\mathrm{is}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\mathrm{side}\:\sqrt{\mathrm{3}}\mathrm{r}. \\ $$ Answered by Olaf_Thorendsen last updated on 03/Jul/21…

consider-the-circle-x-1-2-y-1-2-2-A-1-4-B-1-5-if-P-is-a-point-on-the-circle-such-that-PA-PB-is-maximum-then-prove-that-P-A-B-are-collinear-points-

Question Number 145244 by gsk2684 last updated on 03/Jul/21 $$\mathrm{consider}\:\mathrm{the}\:\mathrm{circle}\: \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}, \\ $$$$\mathrm{A}\left(\mathrm{1},\mathrm{4}\right),\:\mathrm{B}\left(\mathrm{1},−\mathrm{5}\right).\:\mathrm{if}\:\mathrm{P}\:\mathrm{is}\: \\ $$$$\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PA}+\mathrm{PB}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{P},\mathrm{A},\mathrm{B}\:\mathrm{are}\:\mathrm{collinear}\: \\ $$$$\mathrm{points}. \\…

Question-79694

Question Number 79694 by mr W last updated on 27/Jan/20 Commented by mr W last updated on 27/Jan/20 $${Three}\:{circles}\:{with}\:{radii}\:\alpha,\:\beta,\:\gamma\:{have} \\ $$$${their}\:{centres}\:{at}\:{the}\:{vertexes}\:{of}\:{a} \\ $$$${triangle}\:{with}\:{sides}\:{a},\:{b},\:{c}. \\ $$$${Find}\:{the}\:{radius}\:{R}\:{of}\:{the}\:{circle}\:{which}…

given-a-ar-ar-2-ar-3-is-a-GPwith-n-r-lt-1-if-a-x-1-x-2-ar-x-3-x-4-x-5-x-6-ar-2-x-7-x-8-x-9-x-10-x-11-x-12-ar-3-where-a-x-1-x-2-ar-AP-ar-x-3-x-4-x-5-x

Question Number 79649 by john santu last updated on 27/Jan/20 $$\mathrm{given}\:\mathrm{a},\mathrm{ar},\mathrm{ar}^{\mathrm{2}} ,\mathrm{ar}^{\mathrm{3}} ,…\:\mathrm{is}\:\mathrm{a}\:\mathrm{GPwith}\: \\ $$$$\mathrm{n}\rightarrow\infty\:,\mathrm{r}\:<\:\mathrm{1} \\ $$$$\mathrm{if}\::\:\mathrm{a},\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,\mathrm{ar},\mathrm{x}_{\mathrm{3}} ,\:\mathrm{x}_{\mathrm{4}} ,\mathrm{x}_{\mathrm{5}} ,\mathrm{x}_{\mathrm{6}} ,\mathrm{ar}^{\mathrm{2}} , \\…