Menu Close

Category: Geometry

Question-144268

Question Number 144268 by aliibrahim1 last updated on 23/Jun/21 Answered by imjagoll last updated on 24/Jun/21 $$\mathrm{consider}\:\measuredangle\mathrm{CDA}\:=\:\mathrm{90}°−\alpha\:\mathrm{and}\: \\ $$$$\measuredangle\mathrm{CAD}=\mathrm{90}°−\alpha\:\mathrm{so}\:\mathrm{x}\:=\:\mathrm{CD}=\mathrm{3}\:\mathrm{cm} \\ $$ Commented by som(math1967) last…

Question-13067

Question Number 13067 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/May/17 Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/May/17 $${in}\:{triangle}\:{ABC}: \\ $$$$\left.{i}\right)\:\:\:\:\:\:\:\measuredangle{BIA}=\measuredangle{CIB}=\measuredangle{AIC} \\ $$$$\left.{ii}\right)\:\:\:\:{DE}\bot{BC},{DF}\bot{AC},{DH}\bot{AB} \\ $$$$\left.{iii}\right)\:\:\:{S}_{{ABC}} =\:\:\mathrm{1}\:\:\left({area}\:{of}\:\Delta{ABC}\right) \\…

4-66-

Question Number 405 by maharanakamala@gmail.com last updated on 25/Jan/15 $$\left.\right\}\left.\right\}\mathrm{4}×\mathrm{66} \\ $$ Answered by prakash jain last updated on 30/Dec/14 $$\mathrm{4}×\mathrm{66}=\mathrm{264} \\ $$ Terms of…

Show-that-the-function-f-x-x-continuous-on-0-

Question Number 374 by novrya last updated on 25/Jan/15 $${S}\mathrm{how}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)=\sqrt{{x}}\:\mathrm{continuous}\:\mathrm{on}\:\left[\mathrm{0},\infty\right) \\ $$ Answered by prakash jain last updated on 25/Dec/14 $$\mathrm{Right}\:\mathrm{Hand}\:\mathrm{Limit}=\mathrm{Left}\:\mathrm{Hand}\:\mathrm{Limit}=\mathrm{Value} \\ $$$$\underset{{h}\rightarrow\mathrm{0}}…

lim-x-0-f-a-x-b-a-x-f-a-x-b-Then-lim-x-f-x-

Question Number 368 by novrya last updated on 25/Jan/15 $${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left[{f}\left(\frac{{a}}{{x}}+{b}\right)−\frac{{a}}{{x}}{f}\:'\left(\frac{{a}}{{x}}+{b}\right)\right]=\alpha.\:{Then} \\ $$$$\:{li}\underset{{x}\rightarrow\infty} {{m}f}\left({x}\right)=…. \\ $$$$ \\ $$$$ \\ $$ Commented by 123456 last updated…

lim-n-f-a-1-n-f-a-n-

Question Number 364 by novrya last updated on 25/Jan/15 $${li}\underset{{n}\rightarrow\infty} {{m}}\left[\frac{{f}\left({a}+\mathrm{1}/{n}\right)}{{f}\left({a}\right)}\right]^{{n}} =…. \\ $$ Answered by prakash jain last updated on 24/Dec/14 $${y}=\left[\frac{{f}\left({a}+\mathrm{1}/{x}\right)}{{f}\left({a}\right)}\right]^{{x}} \\ $$$$\mathrm{ln}\:{y}={x}\left[\mathrm{ln}{f}\left({a}+\frac{\mathrm{1}}{{x}}\right)−\mathrm{ln}\:{f}\left({a}\right)\right]…