Menu Close

Category: Geometry

From-the-top-of-a-tower-80m-high-a-student-observe-that-the-angle-of-depression-of-the-top-of-a-vertical-pole-A-is-45-and-the-angle-of-depression-of-point-B-on-the-pole-is-60-if-O-is-the-foot-of

Question Number 9813 by tawakalitu last updated on 05/Jan/17 $$\mathrm{From}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tower}\:\mathrm{80m}\:\mathrm{high},\:\mathrm{a}\:\mathrm{student} \\ $$$$\mathrm{observe}\:\mathrm{that}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{depression}\:\mathrm{of}\:\mathrm{the}\:\mathrm{top}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{vertical}\:\mathrm{pole}\:\mathrm{A}\:\mathrm{is}\:\mathrm{45}°\:\mathrm{and}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\: \\ $$$$\mathrm{depression}\:\mathrm{of}\:\mathrm{point}\:\mathrm{B}\:\mathrm{on}\:\mathrm{the}\:\mathrm{pole}\:\mathrm{is}\:\mathrm{60}°. \\ $$$$\mathrm{if}\:\mathrm{O}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pole}\:\mathrm{and}\:\mathrm{OB}\:=\:\mathrm{20m}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$$$\mathrm{leaving}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{surd}\:\mathrm{form}. \\ $$ Answered…

Question-75329

Question Number 75329 by lalitchand last updated on 10/Dec/19 Answered by $@ty@m123 last updated on 10/Dec/19 $${R}=\frac{{abc}}{\mathrm{4}\bigtriangleup} \\ $$$${where}, \\ $$$$\bigtriangleup=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$ Terms of…

Question-75296

Question Number 75296 by ajfour last updated on 09/Dec/19 Commented by ajfour last updated on 09/Dec/19 $${If}\:{perimeter}\:{of}\:\bigtriangleup{PQR}\:{is}\:{p},\:{find} \\ $$$${maximum}\:{area}\:{of}\:\bigtriangleup{PQR}\:{in} \\ $$$${terms}\:{of}\:{a},{b},{c},{p}.\:\:\:\left({p}<{a}+{b}+{c}\right)\: \\ $$ Commented by…

Question-75291

Question Number 75291 by 21042004 last updated on 09/Dec/19 Answered by mind is power last updated on 09/Dec/19 $$\mathrm{let}\:\mathrm{A}\left(\mathrm{a},\mathrm{0}\right),\mathrm{B}=\left(\mathrm{b},\mathrm{0}\right) \\ $$$$\mathrm{Equation}\:\mathrm{of}\:\mathrm{circl}\:\mathrm{center}\:\mathrm{in}\:\mathrm{A} \\ $$$$\mathrm{condition}\:\mathrm{3}\:\:\:\:\mathrm{AB}<\mathrm{2R} \\ $$$$\mathrm{if}\:\mathrm{not}\:\mathrm{C}_{\mathrm{A}}…

0-ba-0-ab-1-ab-ba-3-a-2-b-2-

Question Number 9717 by konen last updated on 28/Dec/16 $$\frac{\mathrm{0}.\mathrm{b}\overset{−} {\mathrm{a}}+\mathrm{0}.\mathrm{a}\overset{−} {\mathrm{b}}}{\frac{\mathrm{1}}{\mathrm{ab}−\mathrm{ba}}}=\mathrm{3}\:\Rightarrow\:\mathrm{a}^{\mathrm{2}\:} −\:\mathrm{b}^{\mathrm{2}\:} =? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com