Question Number 9662 by Joel575 last updated on 23/Dec/16 $$\mathrm{I}\:\mathrm{have}\:\mathrm{2}\:\mathrm{buckets}.\:\mathrm{Each}\:\mathrm{bucket}\:\mathrm{contains}\:\mathrm{green}\:\mathrm{and}\:\mathrm{blue}\:\mathrm{balls} \\ $$$$\mathrm{The}\:\mathrm{first}\:\mathrm{bucket}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{green}\:\mathrm{balls}\:\mathrm{and}\:\mathrm{7}\:\mathrm{blue}\:\mathrm{balls}. \\ $$$$\mathrm{Second}\:\mathrm{bucket}\:\mathrm{contains}\:\mathrm{7}\:\mathrm{green}\:\mathrm{balls}\:\mathrm{and}\:\mathrm{8}\:\mathrm{blue}\:\mathrm{balls}. \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{take}\:\mathrm{those}\:\mathrm{balls}\:\mathrm{with}\:\mathrm{coin}\:\mathrm{toss}. \\ $$$$\mathrm{If}\:\mathrm{head},\:\mathrm{I}\:\mathrm{will}\:\mathrm{take}\:\mathrm{1}\:\mathrm{ball}\:\mathrm{from}\:\mathrm{each}\:\mathrm{bucket}. \\ $$$$\mathrm{But}\:\mathrm{if}\:\mathrm{tail},\:\mathrm{I}\:\mathrm{will}\:\mathrm{take}\:\mathrm{2}\:\mathrm{balls}\:\mathrm{from}\:\mathrm{each}\:\mathrm{bucket}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{propability}\:\mathrm{if}\:\mathrm{all}\:\mathrm{the}\:\mathrm{balls}\:\mathrm{that}\:\mathrm{have}\:\mathrm{been}\:\mathrm{taken} \\ $$$$\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{color}? \\…
Question Number 9661 by geovane10math last updated on 23/Dec/16 $$\left.{a}\right)\:\mathrm{2}^{{i}} \:=\: \\ $$$$ \\ $$$$\left.{b}\right)\:\left({a}_{\mathrm{1}} \:+\:{b}_{\mathrm{1}} {i}\right)^{{a}_{\mathrm{2}} \:+\:{b}_{\mathrm{2}} {i}} \:=\: \\ $$$${Powers}\:{of}\:{complex}\:{numbers}\:??? \\ $$ Commented…
Question Number 9627 by ridwan balatif last updated on 21/Dec/16 Commented by ridwan balatif last updated on 21/Dec/16 Commented by sou1618 last updated on 22/Dec/16…
Question Number 75156 by chess1 last updated on 08/Dec/19 Answered by $@ty@m123 last updated on 08/Dec/19 $$\mathrm{2}{x}+\mathrm{3}{x}+\left(\mathrm{360}−\mathrm{230}\right)=\mathrm{180} \\ $$$$\Rightarrow\mathrm{5}{x}+\mathrm{130}=\mathrm{180} \\ $$$$\Rightarrow{x}=\mathrm{10}\:…..\left(\left(\mathrm{1}\right)\right. \\ $$$$\mathrm{58}+\mathrm{2}\left(\mathrm{20}+{y}\right)=\mathrm{180} \\ $$$$\mathrm{40}+\mathrm{2}{y}=\mathrm{122}…
Question Number 9603 by tawakalitu last updated on 20/Dec/16 $$\mathrm{A}\:\mathrm{regular}\:\mathrm{hexagon}\:\mathrm{has}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{lenght}\:\mathrm{8}\:\mathrm{cm}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{two} \\ $$$$\mathrm{opposite}\:\mathrm{faces}. \\ $$ Answered by mrW last updated on 20/Dec/16 $$\mathrm{2}×\frac{\mathrm{8}}{\mathrm{2}}×\sqrt{\mathrm{3}}=\mathrm{8}\sqrt{\mathrm{3}}\:\mathrm{cm} \\…
Question Number 75104 by chess1 last updated on 07/Dec/19 Answered by mr W last updated on 07/Dec/19 Commented by mr W last updated on 08/Dec/19…
Question Number 75105 by chess1 last updated on 07/Dec/19 Commented by MJS last updated on 07/Dec/19 $$\mathrm{arctan}\:\frac{\mathrm{40}−\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{21}} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 75058 by behi83417@gmail.com last updated on 07/Dec/19 $$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{triangle}}:\:\:\boldsymbol{\mathrm{ABC}}: \\ $$$$\boldsymbol{\mathrm{a}}=\sqrt{\mathrm{2}\:},\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{c}}=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}},\overset{} {\boldsymbol{\mathrm{B}}}−\overset{} {\boldsymbol{\mathrm{C}}}=\frac{\boldsymbol{\pi}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{find}}:\:\:\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} ,\:\:\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{ABC}}\:\:} ,\boldsymbol{\mathrm{d}}_{\boldsymbol{\mathrm{a}}\:\:\:} ,\:\boldsymbol{\mathrm{R}}\:\:\:\:,\overset{} {\boldsymbol{\mathrm{A}}}. \\ $$ Commented by mr…
Question Number 9523 by Joel575 last updated on 12/Dec/16 $$\mathrm{3}{a}\:=\:\left({b}\:+\:{c}\:+\:{d}\right)^{\mathrm{2014}} \\ $$$$\mathrm{3}{b}\:=\:\left({a}\:+\:{c}\:+\:{d}\right)^{\mathrm{2014}} \\ $$$$\mathrm{3}{c}\:=\:\left({a}\:+\:{b}\:+\:{d}\right)^{\mathrm{2014}} \\ $$$$\mathrm{3}{d}\:=\:\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{2014}} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\left({a},\:{b},\:{c},\:{d}\right)\:\mathrm{if}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$ Answered by mrW last updated…
Question Number 140545 by I want to learn more last updated on 09/May/21 Commented by mr W last updated on 09/May/21 $${AL}={AE}=\mathrm{3} \\ $$ Answered…