Menu Close

Category: Geometry

Given-a-convex-hexagon-ABCDEG-satisfy-AB-BC-CD-DE-EF-FA-Suppose-ACE-is-a-right-triangle-BC-BE-DE-DA-FA-FC-min-

Question Number 139254 by mathdanisur last updated on 25/Apr/21 $${Given}\:{a}\:{convex}\:{hexagon}\:{ABCDEG} \\ $$$${satisfy}:\:{AB}={BC},\:{CD}={DE},\:{EF}={FA}. \\ $$$${Suppose}\:\bigtriangleup{ACE}\:{is}\:{a}\:{right}\:{triangle}. \\ $$$$\left(\frac{{BC}}{{BE}}+\frac{{DE}}{{DA}}+\frac{{FA}}{{FC}}\right)_{\boldsymbol{{min}}} =? \\ $$ Answered by mr W last updated…

For-x-lt-1-we-have-that-1-x-1-2-1-1-2-x-1-2-1-2-1-2-x-2-1-2-1-2-1-1-2-2-3-x-3-1-x-1-2-1-r-1-k-0-r-1-0-5-k-r-x-r-Let-g-r-k-0-

Question Number 8127 by Yozzia last updated on 30/Sep/16 $${For}\:\mid{x}\mid<\mathrm{1},\:{we}\:{have}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +… \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1}/\mathrm{2}} =\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\underset{{k}=\mathrm{0}} {\overset{{r}−\mathrm{1}} {\prod}}\left(\mathrm{0}.\mathrm{5}−{k}\right)}{{r}!}{x}^{{r}} . \\ $$$${Let}\:{g}\left({r}\right)=\underset{{k}=\mathrm{0}}…

Question-73663

Question Number 73663 by ajfour last updated on 14/Nov/19 Answered by ajfour last updated on 15/Nov/19 $${See}\:{Q}.\mathrm{73673} \\ $$$${V}=\mathrm{2}\int\left(\left(\frac{\rho^{\mathrm{2}} \left(\mathrm{2}\phi\right)}{\mathrm{2}}×\left(−{ds}\right)\right)\right. \\ $$$$\:\rho={s}\mathrm{sin}\:\alpha={s}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\:=\:\frac{{s}}{\mathrm{2}} \\ $$$$\:{s}=\frac{{a}\sqrt{\mathrm{3}}−{r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\alpha}=\frac{\mathrm{2}{a}}{\mathrm{3}}\left(\mathrm{2}+\mathrm{cos}\:\theta\right) \\…

Question-73620

Question Number 73620 by L.Messi last updated on 14/Nov/19 Answered by MJS last updated on 14/Nov/19 $$\mathrm{do}\:\mathrm{you}\:\mathrm{at}\:\mathrm{least}\:\mathrm{know}\:\mathrm{what}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{Circle}\:\mathrm{is}, \\ $$$$\mathrm{Sir}\:\mathrm{L}.\:\mathrm{Messi}? \\ $$ Commented by L.Messi last…