Menu Close

Category: Geometry

Question-71993

Question Number 71993 by TawaTawa last updated on 23/Oct/19 Answered by mind is power last updated on 23/Oct/19 $$\mathrm{let}\angle\:\mathrm{A}\overset{} {\mathrm{C}E}=\angle\mathrm{ADE}=\mathrm{x} \\ $$$$\Rightarrow\angle\mathrm{ECD}=\mathrm{3x}−\mathrm{x}=\mathrm{2x}\Rightarrow\mathrm{EC}=\mathrm{ED}\:\:\mathrm{ECD}\:\mathrm{isocel}\:\mathrm{Triangl} \\ $$$$\angle\mathrm{ADC}=\angle\mathrm{EDC}−\angle\mathrm{EDA}=\mathrm{2x}−\mathrm{x}=\mathrm{x} \\…

Convert-34-8989898989-and-0-789789789789-to-fraction-

Question Number 6419 by sanusihammed last updated on 26/Jun/16 $${Convert}\:\:\:\:\mathrm{34}.\mathrm{8989898989}\:\:\:\:{and}\:\:\:\:\mathrm{0}.\mathrm{789789789789}\: \\ $$$${to}\:{fraction}. \\ $$ Answered by Rasheed Soomro last updated on 26/Jun/16 $${Do}\:{you}\:{mean}\:\:\mathrm{34}.\mathrm{8989898989}…\:\mathrm{89}\:{forever} \\ $$$${and}\:\mathrm{0}.\mathrm{789789789789}…\mathrm{789}\:{forever}?…

in-triangle-ABC-BC-1-B-2-A-find-the-maximum-area-of-ABC-

Question Number 137327 by mr W last updated on 01/Apr/21 $${in}\:{triangle}\:\Delta{ABC}:\:{BC}=\mathrm{1},\:\angle{B}=\mathrm{2}\angle{A}. \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:\Delta{ABC}. \\ $$ Answered by EDWIN88 last updated on 01/Apr/21 $$\angle\mathrm{A}+\angle\mathrm{B}+\angle\mathrm{C}\:=\pi\:;\:\mathrm{3}\angle\mathrm{A}+\angle\mathrm{C}=\pi \\ $$$$\mathrm{let}\:\angle\mathrm{A}\:=\alpha\:;\:\angle\mathrm{B}=\mathrm{2}\alpha\:;\:\angle\mathrm{C}=\pi−\mathrm{3}\alpha…