Menu Close

Category: Geometry

If-C-is-circle-z-1-Then-the-value-of-C-cos-z-sin-z-dz-

Question Number 124 by novrya last updated on 25/Jan/15 $${If}\:{C}\:{is}\:{circle}\:\mid{z}\mid=\mathrm{1}.\:{Then}\:{the}\:{value}\:{of} \\ $$$$\underset{{C}} {\int}\:\frac{{cos}\:{z}}{{sin}\:{z}}\:{dz}\:=…. \\ $$ Commented by 123456 last updated on 13/Dec/14 $$\mathrm{o}\:\mathrm{teorema}\:\mathrm{dos}\:\mathrm{residuos}\:\mathrm{seria}\:\mathrm{bem}\:\mathrm{util}\:\mathrm{aqui}. \\ $$$$\mathrm{note}\:\mathrm{que}\:\mathrm{no}\:\mathrm{interior}\:\mathrm{do}\:\mathrm{contorno}\:\mathrm{C}\:\mathrm{so}\:\mathrm{a}\:\mathrm{um}\:\mathrm{polo}\:\mathrm{simples}\left(\mathrm{z}=\mathrm{0}\right)…

Evaluate-tan-d-

Question Number 120 by novrya last updated on 25/Jan/15 $${Evaluate}\:\int{tan}\:\theta\:{d}\theta \\ $$ Answered by ssahoo last updated on 06/Dec/14 $$\int\mathrm{tan}\:\theta\:\:{d}\theta \\ $$$$=\int\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}{d}\theta \\ $$$$\mathrm{substituting}\:\mathrm{cos}\:\theta={y} \\…

Evaluate-tan-d-

Question Number 119 by novrya last updated on 25/Jan/15 $${Evaluate}\:\int\sqrt{{tan}\:\theta}\:{d}\theta \\ $$ Answered by rajabhay last updated on 06/Dec/14 $$\mathrm{tan}\:\theta={t}^{\mathrm{2}} \\ $$$$\mathrm{sec}^{\mathrm{2}} \theta\:{d}\theta=\mathrm{2}{t}\:{dt},\:\mathrm{sec}^{\mathrm{2}} \theta=\mathrm{1}+{t}^{\mathrm{4}} \\…

we-are-all-students-learning-mutually-from-each-other-we-are-not-at-par-with-great-Ramanuj-and-Hardy-to-solve-problems-related-to-zeta-function-

Question Number 65541 by Tanmay chaudhury last updated on 31/Jul/19 $${we}\:{are}\:{all}\:{students}\:{learning}\:{mutually}\:{from}\:{each}\:{other} \\ $$$${we}\:{are}\:{not}\:{at}\:{par}\:{with}\:{great}\:{Ramanuj}\:{and} \\ $$$${Hardy}…{to}\:{solve}\:{problems}\:{related}\:{to}\:{zeta}\:{function} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-78511

Question Number 78511 by ajfour last updated on 18/Jan/20 Commented by ajfour last updated on 18/Jan/20 $${The}\:{cylinder}\:{has}\:{half}\:{the}\:{volume} \\ $$$${of}\:{the}\:{cuboid}.\:{If}\:{its}\:{circular}\:{faces} \\ $$$${touch}\:{the}\:{adjoining}\:{walls},\:{find} \\ $$$${coordinates}\:{of}\:{points}\:{A},\:{B},\:{C} \\ $$$${in}\:{terms}\:{of}\:{a},\:{b},\:{c}.…