Menu Close

Category: Geometry

Question-69608

Question Number 69608 by TawaTawa last updated on 25/Sep/19 Commented by Prithwish sen last updated on 27/Sep/19 $$\left.\boldsymbol{\mathrm{a}}\right)\:\mid\boldsymbol{\mathrm{AB}}\mid=\mathrm{2}\sqrt{\mathrm{2}}=\:\mathrm{2}.\mathrm{8m} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\boldsymbol{\mathrm{perimeter}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{ALB}}\:=\frac{\mathrm{2}×\pi×\mathrm{2}×\mathrm{270}}{\mathrm{360}}\mathrm{m}=\:\mathrm{9}.\mathrm{4m} \\ $$ Commented by TawaTawa…

One-circle-in-a-plane-can-produce-one-closed-region-at-most-It-produces-one-closed-region-at-least-Two-circles-in-a-plane-can-produce-at-most-three-regions-They-produce-at-least-two-regions

Question Number 4033 by Rasheed Soomro last updated on 27/Dec/15 $$\:\:\:\:\mathrm{One}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{can}\:\mathrm{produce}\:\mathrm{one}\:\:\mathrm{closed} \\ $$$$\mathrm{region}\:\mathrm{at}\:\mathrm{most}\left(\mathrm{It}\:\mathrm{produces}\:\mathrm{one}\:\mathrm{closed}\:\mathrm{region}\:\right. \\ $$$$\left.\mathrm{at}\:\mathrm{least}\right).\mathrm{Two}\:\:\mathrm{circles}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}\:\:\mathrm{can}\:\mathrm{produce} \\ $$$$\mathrm{at}\:\mathrm{most}\:\mathrm{three}\:\:\mathrm{regions}\left(\mathrm{They}\:\mathrm{produce}\:\mathrm{at}\:\mathrm{least}\right. \\ $$$$\left.\mathrm{two}\:\:\mathrm{regions}\right).\mathrm{Three}\:\mathrm{circles}\:\mathrm{can}\:\mathrm{produce}\:\mathrm{seven} \\ $$$$\mathrm{closed}\:\mathrm{regions}\:\mathrm{at}\:\mathrm{most}\left(\mathrm{They}\:\mathrm{produce}\:\mathrm{three}\right. \\ $$$$\left.\mathrm{closed}\:\mathrm{regions}\:\mathrm{at}\:\mathrm{least}\right). \\ $$$$…

Question-69545

Question Number 69545 by TawaTawa last updated on 24/Sep/19 Commented by mr W last updated on 24/Sep/19 $$\mathrm{30}×\mathrm{20}−\mathrm{28}×\mathrm{18}=\mathrm{96}\:{m}^{\mathrm{2}} \\ $$$$\mathrm{96}×\mathrm{0}.\mathrm{08}=\mathrm{7}.\mathrm{68}\:{m}^{\mathrm{3}} \\ $$$$\frac{\mathrm{7}.\mathrm{68}}{\mathrm{1}}=\mathrm{7}.\mathrm{68}\:\Rightarrow\:\mathrm{8}\:\:{bags} \\ $$$$\mathrm{8}×\mathrm{600}=\mathrm{4800}\:{N} \\…

Question-69494

Question Number 69494 by TawaTawa last updated on 24/Sep/19 Commented by TawaTawa last updated on 24/Sep/19 $$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{find}\:\mathrm{the}\:\mathrm{Area}\:\mathrm{and}\:\mathrm{Perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{part}. \\ $$ Commented by mind is power last…

We-can-make-a-cyllinder-from-a-rectangle-by-connecting-its-opposite-edges-Suppose-we-have-two-copies-of-a-non-square-rectangle-From-one-copy-we-make-a-long-cyllinder-by-connecting-long-edges-of-it-w

Question Number 3950 by Rasheed Soomro last updated on 25/Dec/15 $$\mathcal{W}{e}\:{can}\:{make}\:{a}\:\boldsymbol{{cyllinder}}\:{from}\:{a} \\ $$$$\boldsymbol{{rectangle}}\:{by}\:{connecting}\:{its}\:{opposite} \\ $$$$\boldsymbol{{edges}}. \\ $$$${Suppose}\:{we}\:{have}\:{two}\:{copies}\:{of}\:{a} \\ $$$$\boldsymbol{{non}}−\boldsymbol{{square}}\:\boldsymbol{{rectangle}}.{From} \\ $$$${one}\:{copy}\:{we}\:{make}\:{a}\:{long}\:{cyllinder} \\ $$$${by}\:{connecting}\:{long}\:{edges}\:{of}\:{it}\: \\ $$$${whereas}\:{from}\:{other}\:{copy}\:{by}\:{connecting}…

Prove-that-inside-a-given-square-a-semicircle-of-the-largest-possible-area-can-be-constructed-using-ruler-and-compass-

Question Number 3944 by Rasheed Soomro last updated on 25/Dec/15 $$\mathcal{P}{rove}\:{that},\:{inside}\:\:{a}\:{given}\:{square},\:{a}\:{semicircle}\: \\ $$$${of}\:{the}\:{largest}\:{possible}\:{area},\:{can}\:{be}\:{constructed}\: \\ $$$${using}\:{ruler}\:{and}\:{compass}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

What-is-the-area-of-overlapping-region-of-three-circles-of-radii-r-1-r-2-r-3-with-their-respective-centres-C-1-C-2-and-C-3-when-r-1-r-2-gt-C-1-C-2-r-2-r-3-gt-C-2-C-3-and-r-

Question Number 3943 by Rasheed Soomro last updated on 25/Dec/15 $$\mathcal{W}{hat}\:{is}\:{the}\:{area}\:\:{of}\:\:{overlapping}\:{region} \\ $$$${of}\:{three}\:{circles}\:{of}\:{radii}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:,\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:,\:\boldsymbol{\mathrm{r}}_{\mathrm{3}} \:{with}\:{their} \\ $$$${respective}\:{centres}\:\boldsymbol{\mathrm{C}}_{\mathrm{1}} \:,\:\boldsymbol{\mathrm{C}}_{\mathrm{2}} \:{and}\:\boldsymbol{\mathrm{C}}_{\mathrm{3}} \:{when} \\ $$$$\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} >\:\boldsymbol{\mathrm{C}}_{\mathrm{1}}…

y-log-e-x-m-sa-r-2-yr-2-log-e-x-m-sa-e-yr-2-x-m-sa-me-rry-x-mas-Merry-christmas-everyone-Let-our-venture-for-knowledge-continue-through-to-the-new-year-

Question Number 3930 by Filup last updated on 25/Dec/15 $${y}=\frac{\mathrm{log}_{{e}} \left(\frac{{x}}{{m}}−{sa}\right)}{{r}^{\mathrm{2}} } \\ $$$${yr}^{\mathrm{2}} =\mathrm{log}_{\mathrm{e}} \left(\frac{{x}}{{m}}−{sa}\right) \\ $$$${e}^{{yr}^{\mathrm{2}} } =\frac{{x}}{{m}}−{sa} \\ $$$${me}^{{rry}} ={x}−{mas} \\ $$$$…