Menu Close

Category: Geometry

Prove-that-AM-gt-HM-

Question Number 1268 by 314159 last updated on 18/Jul/15 $$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{AM}}\:>\:\boldsymbol{\mathrm{HM}}. \\ $$ Answered by prakash jain last updated on 18/Jul/15 $$\mathrm{AM}=\frac{{a}+{b}}{\mathrm{2}},\:\mathrm{HM}=\frac{\mathrm{2}{ab}}{{a}+{b}} \\ $$$$\mathrm{AM}−\mathrm{HM}=\frac{{a}+{b}}{\mathrm{2}}−\frac{\mathrm{2}{ab}}{{a}+{b}}=\:\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({a}+{b}\right)} \\…

If-the-line-x-1-2-y-1-3-z-1-4-x-3-1-y-k-2-z-1-intersect-the-value-of-k-is-

Question Number 132327 by liberty last updated on 13/Feb/21 $$\:\mathrm{If}\:\mathrm{the}\:\mathrm{line}\:\begin{cases}{\frac{\mathrm{x}−\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{y}+\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{z}−\mathrm{1}}{\mathrm{4}}}\\{\frac{\mathrm{x}−\mathrm{3}}{\mathrm{1}}=\frac{\mathrm{y}−\mathrm{k}}{\mathrm{2}}=\frac{\mathrm{z}}{\mathrm{1}}}\end{cases} \\ $$$$\:\mathrm{intersect}\:.\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{is}\: \\ $$ Answered by Ar Brandon last updated on 13/Feb/21 $$\mathrm{L}_{\mathrm{1}} :\:\mathrm{i}−\mathrm{j}+\mathrm{k}+\lambda\left(\mathrm{2i}+\mathrm{3j}+\mathrm{4k}\right)=\left(\mathrm{1}+\mathrm{2}\lambda\right)\mathrm{i}+\left(\mathrm{3}\lambda−\mathrm{1}\right)\mathrm{j}+\left(\mathrm{4}\lambda+\mathrm{1}\right)\mathrm{k} \\…

Question-66527

Question Number 66527 by mr W last updated on 16/Aug/19 Commented by mr W last updated on 16/Aug/19 $${the}\:{perimeter}\:{of}\:{a}\:{rope}\:{loop}\:{is}\:{L}. \\ $$$${now}\:{it}\:{is}\:{hanged}\:{on}\:{two}\:{pins}\:{A}\:{and}\:{B}. \\ $$$${the}\:{distance}\:{between}\:{the}\:{pins}\:{is}\:{b}.\: \\ $$$${all}\:{contact}\:{is}\:{frictionless}.…

f-x-2-f-x-2-f-1-1-

Question Number 860 by 123456 last updated on 28/Mar/15 $${f}\left({x}^{\mathrm{2}} \right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$ Commented by prakash jain last updated on 28/Mar/15 $${f}\left({x}\right)=\mathrm{0}\:\mathrm{or}\:{f}\left({x}\right)=\mathrm{1} \\…