Menu Close

Category: Geometry

Consider-quadrilateral-ABCD-same-as-in-Q-1378-with-same-conditions-restrictions-Pl-refer-the-Question-again-What-could-be-possible-minimum-and-maximum-area-of-the-quadrila

Question Number 1395 by Rasheed Soomro last updated on 28/Jul/15 ConsiderquadrilateralABCDsameasinQ1378withsameconditions/restrictions(PlrefertheQuestionagain).Whatcouldbepossibleminimumandmaximumareaofthequadrilateral?Whenqusdrilateralhasminimumareawhatisthevalue/sofmA?Similarlywhatisvalue/sofmAincaseofmaximumarea?$$…

Four-sides-mAB-mBC-mCD-and-mDA-of-a-quadrilateral-ABCD-have-measurement-a-b-c-and-d-units-respectively-Let-the-sum-of-any-adjacent-sides-is-not-equal-to-the

Question Number 1378 by Rasheed Soomro last updated on 28/Jul/15 FoursidesmAB,mBC,mCDandmDAofaquadrilateralABCDhavemeasurementa,b,canddunitsrespectively.Letthesumofanyadjacentsidesisnotequaltothesumofremainingadjacentsidesandmeasurementofallthesidesispositiveandreal.$$\:\:\:\:\:\:{What}\:{could}\:{be}\:{the}\:{possible}\:{minimum}\:{and}\:{maximum}\:{values}…

Prove-that-AM-gt-HM-

Question Number 1268 by 314159 last updated on 18/Jul/15 ProvethatAM>HM. Answered by prakash jain last updated on 18/Jul/15 AM=a+b2,HM=2aba+b$$\mathrm{AM}−\mathrm{HM}=\frac{{a}+{b}}{\mathrm{2}}−\frac{\mathrm{2}{ab}}{{a}+{b}}=\:\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({a}+{b}\right)} \

If-the-line-x-1-2-y-1-3-z-1-4-x-3-1-y-k-2-z-1-intersect-the-value-of-k-is-

Question Number 132327 by liberty last updated on 13/Feb/21 Iftheline{x12=y+13=z14x31=yk2=z1intersect.thevalueofkis Answered by Ar Brandon last updated on 13/Feb/21 $$\mathrm{L}_{\mathrm{1}} :\:\mathrm{i}−\mathrm{j}+\mathrm{k}+\lambda\left(\mathrm{2i}+\mathrm{3j}+\mathrm{4k}\right)=\left(\mathrm{1}+\mathrm{2}\lambda\right)\mathrm{i}+\left(\mathrm{3}\lambda−\mathrm{1}\right)\mathrm{j}+\left(\mathrm{4}\lambda+\mathrm{1}\right)\mathrm{k} \