Menu Close

Category: Geometry

Question-200475

Question Number 200475 by Rupesh123 last updated on 19/Nov/23 Answered by AST last updated on 19/Nov/23 $$\frac{\mathrm{2}{sin}\mathrm{20}}{{PC}}=\frac{\mathrm{1}}{{AC}}\Rightarrow\frac{{PC}}{{AC}}=\mathrm{2}{sin}\mathrm{20} \\ $$$${Let}\:\angle{PBC}={x};\:\frac{{sinx}}{{PC}}=\frac{{cos}\mathrm{10}}{{BC}}\Rightarrow{BC}=\frac{{PCcos}\left(\mathrm{10}°\right)}{{sin}\left({x}\right)} \\ $$$$\frac{{sin}\left(\mathrm{20}+{x}\right)}{{AC}}=\frac{{sin}\mathrm{50}}{{BC}}=\frac{{sin}\mathrm{50}{sinx}}{{PCcos}\mathrm{10}}\Rightarrow\frac{{PC}}{{AC}}=\frac{{sin}\mathrm{50}{sinx}}{{cos}\left(\mathrm{10}\right){sin}\left(\mathrm{20}+{x}\right)} \\ $$$$\Rightarrow\mathrm{2}{sin}\mathrm{20}=\frac{{sin}\mathrm{50}{sinx}}{{cos}\mathrm{10}{sin}\left(\mathrm{20}+{x}\right)}\Rightarrow\frac{{sinx}}{{sin}\left(\mathrm{20}+{x}\right)}=\frac{\mathrm{2}{sin}\mathrm{20}{cos}\mathrm{10}}{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \mathrm{20}} \\…

Question-200471

Question Number 200471 by Mingma last updated on 19/Nov/23 Answered by AST last updated on 19/Nov/23 $$\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}×\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}\Rightarrow\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}=\mathrm{8} \\ $$$$\frac{\left[{CAB}\right]}{\left[{ADB}\right]}=\frac{{CC}_{\mathrm{1}} }{{DC}_{\mathrm{1}} }=\frac{{CD}}{{DC}_{\mathrm{1}}…