Menu Close

Category: Geometry

Question-214199

Question Number 214199 by mr W last updated on 01/Dec/24 Commented by mr W last updated on 01/Dec/24 $$\left[{see}\:{Q}\mathrm{214176}\right] \\ $$$${find}\:{the}\:{radius}\:{of}\:{the}\:{maximal} \\ $$$${circle}\:{inscribed}\:{between}\:{the}\:{curves} \\ $$$${f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{as}\:{shown}.…

Question-214100

Question Number 214100 by ajfour last updated on 28/Nov/24 Answered by ajfour last updated on 29/Nov/24 Commented by ajfour last updated on 29/Nov/24 $$\mathrm{sin}\:\alpha=\frac{{a}}{\mathrm{2}{b}+{a}}=\frac{\mathrm{1}}{\mathrm{2}{s}+\mathrm{1}}\:\:\:\forall\:\:{s}=\frac{{b}}{{a}},\:{t}=\frac{{r}}{{a}} \\…

Question-214012

Question Number 214012 by ajfour last updated on 24/Nov/24 Commented by ajfour last updated on 24/Nov/24 $${Outer}\:{circle}\:{radius}\:{is}\:{R}.\:{Circle}\:{with} \\ $$$${center}\:{A}\:{has}\:{radius}\:{r}={R}/\mathrm{2}. \\ $$$${If}\:\bigtriangleup{ABC}\:{is}\:{equilateral},\:{find}\:{its} \\ $$$${edge}\:{length}\:\left({say}\:{a}\right). \\ $$…

Question-213835

Question Number 213835 by BaliramKumar last updated on 18/Nov/24 Answered by mehdee7396 last updated on 18/Nov/24 $${OA}=\sqrt{\mathrm{13}}\:\:\&\:\:\:{OB}=\mathrm{3} \\ $$$${sin}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\Rightarrow{cos}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}} \\ $$$$\Rightarrow{tan}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}\Rightarrow\theta=\mathrm{2}{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}\:\:\checkmark \\ $$$$ \\…