Menu Close

Category: Geometry

Question-198763

Question Number 198763 by mr W last updated on 24/Oct/23 Commented by mr W last updated on 24/Oct/23 $$\mathrm{8}\:{small}\:{balls}\:{and}\:{a}\:{big}\:{ball}\:{on}\:{a} \\ $$$${table}\:{touch}\:{each}\:{other}. \\ $$$${if}\:{the}\:{radius}\:{of}\:{the}\:{small}\:{balls}\:{is}\:{r}, \\ $$$${find}\:{the}\:{radius}\:{of}\:{the}\:{big}\:{ball}.…

Given-an-isosceles-triangle-ABC-which-A-30-AB-AC-A-point-D-is-midpoint-of-BC-A-point-P-is-chosen-on-then-segment-AD-and-a-point-Q-is-chosen-on-the-side-AB-so-that-BP-PQ-Find-the-angle-

Question Number 198643 by cortano12 last updated on 22/Oct/23 $$ \\ $$$$\mathrm{Given}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{ABC} \\ $$$$\:\mathrm{which}\:\:\angle\mathrm{A}=\:\mathrm{30}°,\:\mathrm{AB}\:=\:\mathrm{AC}.\: \\ $$$$\mathrm{A}\:\mathrm{point}\:\mathrm{D}\:\mathrm{is}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{BC}\:.\: \\ $$$$\mathrm{A}\:\mathrm{point}\:\mathrm{P}\:\mathrm{is}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{then} \\ $$$$\mathrm{segment}\:\mathrm{AD}\:\mathrm{and}\:\mathrm{a}\:\mathrm{point}\:\mathrm{Q}\:\mathrm{is} \\ $$$$\mathrm{chosen}\:\mathrm{on}\:\mathrm{the}\:\mathrm{side}\:\mathrm{AB}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{BP}=\:\mathrm{PQ}. \\…

Question-198604

Question Number 198604 by ajfour last updated on 22/Oct/23 Commented by ajfour last updated on 22/Oct/23 $$\theta+\phi=\alpha\:\left({known}\right) \\ $$$${radius}\:{of}\:{arc}\:{is}\:{unity}. \\ $$$${If}\:{the}\:{two}\:{shaded}\:{parts}\:{are}\:{equal}, \\ $$$${find}\:\theta={f}\left(\alpha\right). \\ $$…

Question-198421

Question Number 198421 by mr W last updated on 19/Oct/23 Commented by mr W last updated on 19/Oct/23 $${given}\:{that}\:{the}\:{midpoints}\:{of}\:{the}\:{sides} \\ $$$${of}\:{a}\:{convex}\:{quadrilaterial}\:{are} \\ $$$${concyclic}.\:{if}\:{the}\:{lengthes}\:{of}\:{three}\:{of} \\ $$$${its}\:{sides}\:{are}\:{a},\:{b},\:{c}\:{respectively},\:{find}…

Question-198235

Question Number 198235 by MASANJAJJ last updated on 15/Oct/23 Answered by Rasheed.Sindhi last updated on 15/Oct/23 $${y}={m}\angle{B}\:\:\:\:\:\:\:\left[{Corresponding}\:{angles}\right] \\ $$$${x}={m}\angle{A}\:\:\:\:\:\:\left[{Alternative}\:{angles}\right] \\ $$$${z}={m}\angle{ACB}\:\:\:\left[{Same}\:{angles}\right] \\ $$$${x}+{y}+{z}={m}\angle{A}+{m}\angle{B}+{m}\angle{ACB}=\mathrm{180}°\:\left[{Angles}\:{of}\:{triangle}\right] \\ $$$$…

In-MNO-MN-6units-MO-4-units-and-NO-12-units-If-the-bisector-of-the-angle-M-meets-NO-at-P-calculate-NP-

Question Number 198054 by necx122 last updated on 09/Oct/23 $${In}\:\bigtriangleup{MNO},\:{MN}=\mathrm{6}{units},\:{MO}=\mathrm{4}\:{units} \\ $$$${and}\:{NO}=\mathrm{12}\:{units}.\:{If}\:{the}\:{bisector}\:{of}\:{the} \\ $$$${angle}\:{M}\:{meets}\:{NO}\:{at}\:{P},\:{calculate}\:{NP}. \\ $$ Commented by som(math1967) last updated on 09/Oct/23 $${But}\:{MN}+{MO}=\mathrm{10} \\…