Menu Close

Category: Geometry

Montrer-que-x-an-bm-m-n-

Question Number 197541 by a.lgnaoui last updated on 20/Sep/23 $$\boldsymbol{\mathrm{Montrer}}\:\boldsymbol{\mathrm{que}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{x}}=\frac{\boldsymbol{\mathrm{an}}+\boldsymbol{\mathrm{bm}}}{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} \\ $$ Commented by a.lgnaoui last updated on 20/Sep/23 Commented by a.lgnaoui last…

Question-197499

Question Number 197499 by cherokeesay last updated on 19/Sep/23 Answered by HeferH last updated on 19/Sep/23 $$\: \\ $$$$\:\frac{{x}}{{r}}\:=\:\frac{\mathrm{4}{r}}{\mathrm{5}{r}}\:\:\Rightarrow\:{x}\:=\:\frac{\mathrm{4}{r}}{\mathrm{5}}\: \\ $$$$\:{Green}\:=\:{Sqr}/\mathrm{2}\:−\:\frac{\mathrm{4}{r}}{\mathrm{5}}\:\centerdot\:\mathrm{4}{r}\:\centerdot\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\:{Green}\:=\:\frac{\mathrm{16}{r}^{\mathrm{2}} }{\mathrm{2}}\:−\frac{\mathrm{16}{r}^{\mathrm{2}} }{\mathrm{10}}\:=\:\frac{\mathrm{4}\centerdot\mathrm{16}{r}^{\mathrm{2}}…

answer-to-the-question-number-197017-AF-FI-amp-AG-GJ-FG-1-2-IJ-1-6-BC-FGH-is-squilatral-FGH-ABC-S-FGH-S-SBC-1-36-

Question Number 197287 by MM42 last updated on 13/Sep/23 $${answer}\:{to}\:{the}\:{question}\:{number} \\ $$$$\mathrm{197017} \\ $$$${AF}={FI}\:\&\:\:{AG}={GJ}\Rightarrow{FG}=\frac{\mathrm{1}}{\mathrm{2}}{IJ}=\frac{\mathrm{1}}{\mathrm{6}}{BC} \\ $$$$\bigtriangleup{FGH}\:\:{is}\:\:{squilatral}\:\Rightarrow\:\bigtriangleup{FGH}\approx\bigtriangleup{ABC} \\ $$$$\Rightarrow\frac{{S}_{{FGH}} }{{S}_{{SBC}} }\:=\frac{\mathrm{1}}{\mathrm{36}\:}\:\checkmark \\ $$$$ \\ $$ Commented…

Question-197095

Question Number 197095 by Mingma last updated on 07/Sep/23 Answered by mahdipoor last updated on 07/Sep/23 $$\frac{{AB}}{{sin}\mathrm{4}{a}}=\frac{{BM}}{{sina}}\:\:\: \\ $$$$\:\frac{{CD}}{{sin}\mathrm{4}{a}}=\frac{{MC}}{{sin}\mathrm{2}{a}}\Rightarrow\frac{\mathrm{2}.{CD}.{cosa}}{{sin}\mathrm{4}{a}}=\frac{{MC}}{{sina}}\Rightarrow \\ $$$$\frac{{MC}}{{sina}}+\frac{{BM}}{{sina}}=\frac{{CB}}{{sina}}=\frac{\mathrm{2}.{CD}.{cosa}}{{sin}\mathrm{4}{a}}+\frac{{AB}}{{sin}\mathrm{4}{a}} \\ $$$$\Rightarrow\frac{{sin}\mathrm{4}{a}}{{sina}}=\mathrm{4}{cos}\mathrm{2}{a}.{cosa}=\mathrm{2}{cosa}+\mathrm{1}\Rightarrow \\ $$$$\mathrm{8}{cos}^{\mathrm{3}}…

Question-196829

Question Number 196829 by cortano12 last updated on 01/Sep/23 Answered by universe last updated on 01/Sep/23 $${by}\:{apollonius}\:{theorem} \\ $$$${BC}^{\mathrm{2}} \:+\:{PC}^{\mathrm{2}\:} \:=\:\mathrm{2}\left({QC}^{\mathrm{2}} +{PQ}^{\mathrm{2}} \right)\:\:\:…..\left(\mathrm{1}\right) \\ $$$${AC}^{\mathrm{2}}…